高考数学知识点:动点的轨迹方程
高考数学知识点:动点的轨迹方程 动点的轨迹方程:
在直角坐标系中,动点所通过的轨迹用一个二元方程f(x,y)=0表示出来。
求动点的轨迹方程的差不多方法:
直截了当法、定义法、相关点法、参数法、交轨法等。
1、直截了当法:
假如动点运动的条件确实是一些几何量的等量关系,这些条件简单明确,不需要专门的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直截了当法;
用直截了当法求动点轨迹一样有建系,设点,列式,化简,证明五个步骤,最后的证明能够省略,但要注意“挖”与“补”。求轨迹方程一样只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
2、定义法:
利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直截了当写出所求的动点的轨迹方程,高考生物,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。定义法的关键是条件的转化??转化成某一差不多轨迹的定义条件;
3、相关点法:
动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。一样地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。
4、参数法:
求轨迹方程有时专门难直截了当找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。要专门注意消参前后保持范畴的等价性。多参问题中,依照方程的观点,引入n个参数,需建立n+1个方程,才能消参(专门情形下,能整体处理时,方程个数可减少)。
5、交轨法:
求两动曲线交点轨迹时,可由方程直截了当消去参数,例如求两动直线的交点经常用此法,也能够引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。能够说是参数法的一种变种。用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可。交轨法实际上是参数法中的一种专门情形。
求轨迹方程的步骤:
(l)建系,设点建立适当的坐标系,设曲线上任意一点的坐标为M(x,y);
“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初显现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。事实上《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意差不多一致。
(2)写集合写出符合条件P的点M的集合P(M);
(3)列式用坐标表示P(M),列出方程f(x,y)=0;
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。而对那些专门讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,要紧协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显要,也称得上朝廷要员。至此,不管是“博士”“讲师”,依旧“教授”“助教”,其今日教师应具有的差不多概念都具有了。
(4)化简化方程f(x,y)=0为最简形式;
(5)证明证明以化简后的方程的解为坐标的点差不多上曲线上的点,
家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,小孩一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情形及时传递给家长,要求小孩回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高专门快。
因篇幅问题不能全部显示,请点此查看更多更全内容