您的当前位置:首页正文

Look-up table FPGA synthesis from minimized multi-valued pseudo Kronecker expressions

2022-11-28 来源:星星旅游
Look-upTableFPGASynthesisfromMinimizedMulti-ValuedPseudo

KroneckerExpressions

PerLindgren

DivisionofComputerEngineeringLule˚aUniversityofTechnology

97187Lule˚aSwedenpln@sm.luth.se

RolfDrechslerBerndBecker

InstituteofComputerScienceAlbert-Ludwigs-University

79110FreiburgimBreisgau,Germanydrechsle/becker@informatik.uni-freiburg.de

Abstract

InthispaperweoutlineamethodforLook-upTable-FPGA(LUT-FPGA)synthesisfromminimizedMulti-ValuedPseudoKroneckerExpressions(MVPSDKROs).Byre-strictinglogicminimizationtoconsideronlyeasilymap-pableexpressions,aregularCellularArchitecture(CA)lay-outwithoutroutingoverheadisobtained.Inthiswayourmethodcombineslogicminimization,mappingandrouting.ThetransformationintotheMVdomainreducestheareaasthenumberofproductsinthePSDKROexpressioncanbefurtherminimized.DerivingtheexactminimumMVPS-DKROisknowntobehardorevenintractable.Weaddressthisbyapplyingpruningtechniquesbasedoncostestima-tionanddynamicmethodstofindsuitablevariableorder-ings.ResultsonasetofMCNCbenchmarksshowthead-vantagesoftheproposedminimizationmethods.

1Introduction

TheincreasingcomplexityofmodernVLSIcircuitryisonlymanageablethroughadvancedCADsystemswhichasoneimportantcomponentincludelogicsynthesistools.ProblemsencounteredinsynthesiscanoftenbeformulatedintermsofBooleanfunctions.OneinterestingdesignstyleisbasedonFPGAs[1,8].ManypowerfultoolshavebeendevelopedinthepasttominimizeBooleanfunctionsandmapthemtocommerciallyavailableFPGAtypes.Oneofthemajordrawbacksofmostmethodspresentedsofaristhattheyconsiderlogicminimization,mappingandrout-ingindependently,i.e.,duringsynthesisonly“synthesismeasures”likenumberofgateequivalentsareconsidered.Theseapproachessufferfromlargeareaoverheadincaseswherethehighlyoptimizednetlistdonotfitwellonthetar-getFPGA[14].

Recently,firstapproacheshavebeenpresentedcombin-ingminimization,mappingandrouting(seee.g.[10]).Byrestrictingthesynthesisprocesstoconsideronlyeasily

2.1Previouswork

In[10]acomprehensivesynthesismethodforCAswaspresented.TheresultingrectangularstructureimplementsaComplexMaitraLogicArray(CMLA)havinga“complex”inputplaneanda“collecting”outputplane.ThestructureissimilartothatofanAND-EXORPLA,butintheCAeach“row”canimplementabroaderclassoffunctions,hencepossiblyreducethenumberofrequired“rows”.Aforward(reverse)Maitratermisafactoredformrecursivelydefinedas;()whereisaforward(reverse)Maitraterm,isaliteraloccurringonlyonceintheex-pressionandisaBooleanfunctionoftwoarguments.

whereeachliteraloccursonlyonce

intheexpressionformsabidirectionalMaitraterm.The“complex”termsusedin[10]areforward,reverseorbidi-rectionalMaitraterms,derivedbytheuseofa“cube”basedESOPminimizer.Thisfactoredformfitsdirectlyontoa“row”inCAswhereeachcellcomputesa2-inputfunction,thusaregularstructureisobtained.Anotherapproachtode-riveMaitratermswaspresentedin[5],whereLeeadoptsanelegantDDbasedmethodsimilartothatusedforPSDKROminimization.

2.2Synthesisfrommulti-valuedPSDKROs

Theapproachesdescribedintheprevioussectionareef-ficientlyutilizingonlyCAswhereeachcellimplementsa2-inputfunction.Inthefollowingweoutlineasynthesismethodbasedonmulti-valuedPSDKROminimizationap-plicabletoavailable

--LUTFPGAarchitectures(seeFigure1).

Eachproductina-valuedPSDKROexpression,can

becomputedbyaCAof

-LUTs(analogouslytothe2-valuedcase[5])asshowninFigure2“InputPlane”.Theresultingoutputfunction(s)canbecomputedastheEXORofsuchproducts(seeFigure2“OutputPlane”).ManyavailableFPGAs(e.g.,XilinxC3000,C4000,AT&TOrcaetc.)cancompute(1)outputfunctions,undertheconstraintthatsomeinputsareshared.AsshowninFig-ure2,theinputvariables(encodingaMVvariable)arecommontoeachLUT,thusmeetingthesharingcon-straint.Besidesfortheinputvariablesallinterconnectionsareensuredtobelocal.E.g.,thislayoutallowsustoef-ficientlyutilize“directinterconnects”betweencellsand“longlines”fortheinputvariablesintheXilinxarchitec-tures.Ingeneral,synthesisfora--LUTarchitecture

isperformedbyminimizationof

-valuedPSDKROs.Anupperboundofrequiredcellsforafunctionisgiven

by

:(OutputColumns)-valuedPSDKRO()

(Rows)

Thisoutlinesafirst“naive”approachtoCAsynthesisfromMVPSDKROs.ByextendingMaitratermfactoriza-tion[5]totheMVcaseweexpecttoreducethenumber

Xx1

1xk-pk -p inout-LUTk-pppFigure1.

-

-LUTFPGAcell.

Input Plane

Output Plane

X1X2X3Xnk-pppCMLAo1opO1

O2Om

4 -1 -LUTinout311FoldingFigure2.Resultingregularlayout.

ofcells.FurthermorewecanapplyPLA-likefoldingtech-niques[10]inthe“InputPlane”,undertheconditionsthatroutingresourcesaresufficientandthatthe“OutputPlane”managestocollecttheresult.Figure2(bottom)showspos-siblefoldingfor--LUTs.Theextensiontodon'tcareassignment[6]forMVPSDKROminimizationisalsoaninterestingtopicforfutureresearch.

3PreliminariesonPseudoKroneckerEx-pressions

Inthefirstsubsectionwebrieflyreviewtheessentialdef-initionsof(2-valued)PseudoKroneckerExpressions(PSD-KROs).(Formoredetailssee[13,3].)Inthenextsubsec-tionwediscussthepropertiesofMVPSDKROexpressions,detailscanbefoundin[13].

3.12-ValuedPSDKROExpressions

Let()denotethecofactorofwithrespectto()andisdefinedas,beingtheExclu-siveORoperation.ABooleanfunctionthenberepresentedbyoneofthefollowingformulae:

can(1)(2)

(3)

Ifweapplytoafunctioneither,orwegettwosub-functions.Toeachsub-functionagain,orcanbeapplied.Thisisdoneuntilconstantfunctionsarereached.Ifwemultiplyouttheresultingexpressionwegeta2-levelAND/EXORform,calledaPSDKRO.

Thedecompositionsareappliedwithrespecttoafixedvariableordering.Notethatthechoiceofthevariableorder-inginwhichthedecompositionsareappliedandthechoiceofthedecompositionpersub-functionlargelyinfluencesthesizeoftheresultingrepresentation,andmayvaryfromlin-eartoexponential.

3.2Multi-ValuedPSDKROExpressions

Inthegeneral-valuedcaseInistheencodedfollowingbyweBooleanassume

variablesavariablewhere.Let.

denotethecofactorsofwithrespectto.ABooleanfunctionby

(correspondingisrepresented

totheMVShannonexpansion).ThenumberofpossibleEXORcombinationsofthecofactorsis4-valuedcasethe15successors.E.g.,in,,,,,,,(the,

,,,,,,),inthe16-valuedcasethe255successors

),andinthegeneralcasethe

Toderivesuccessorsthenumber().

ofPSDKROexpansions(i.e.,non-linearcombinationsofsuccessors)inthegeneral-valued

caseonewouldneedtoconsider

possiblecombina-tions.In[13]acomputerenumerationforthe4-valuedcaseshowsthat840expansionsexist,buttheproblembecomes

computationallyintractablebyenumerationfor

.Ifweapplya-valueddecompositionto,wegetsub-functions,forwhichwecanrecursivelyapply-valuedde-compositionsuntilconstantfunctionsarereached.

Asforthe2-valuedcase,thedecompositionsareappliedwithrespecttoafixedvariableorder.Boththechoiceofdecompositionsappliedandtheorderofwhichthedecom-positionsarecarriedoutwillaffectthesizeoftheresult-ingrepresentation.Iftion

variablesintoMVvariablesthewechoicestartoutwillalsooffromgroupinga2-valuedfunc-largelyinfluencethe2-valuedtheresult.

3.3PSDKROMinimization

Inthissectionwereviewpreviouslypresented(DD

based)algorithmsforminimizingthenumberofproductsforPSDKROexpressions.

In[13]amethodforexact2-valuedPSDKROminimiza-tionbasedonETDDswaspresented.Thethreesuccessors,andarestoredforeachnode.Itbeenproventhatthememorycomplexityis

similarminimizationmethodbasedonOrderedBinary.has

De-AcisionDiagrams(OBDDs)[2]hasbeenpresentedin[3],havinglowercostforeachnodeasisnotstored.In[7]thismethodwasextendedwithheuristicstrategiesfor

prune

pruneprunefafbfafbpapb

papb

max( , )papb

prune - min( , )papb

fcfc(a)

(b)

Figure3.Pruningofsearchspace

searchspacepruning,tunabletotradeoffqualityforcom-putationalresources.

IntheDDrepresentationofa1-pathrepresentsaprod-uctterm.Thebasicminimizationalgorithmrecursivelytra-versesfromthetoptowardstheterminals.AteachnodeanEXORoperationiscarriedout(orpriortominimizationintheETDDapproach)whichbytheuseofOBDDscanbeperformedinpolynomialtime[2].FromthefactthatforeachofthedecompositionformulaefromSection3.1onlytwooutofthethreepossiblesuccessors,andareneededtorepresentthefunction,wecanchoosethetwoleastcostlyinordertominimizetheresultingPSDKRO.Thiscaneasilybeformulatedbyasimplerecursivealgo-rithmonOBDDs[3].

For4-valuedPSDKROminimizationanextensionoftheETDDapproachwaspresentedin[13].All15successorsarerecursively(andexhaustively)computedandstoredinanOrderedPenta-decimalDecisionDiagram(OPDD).Outofthe840possible4-valuedexpansions,theonehavingtheleastcostischosenforeachnodeinthediagram.In[12]aheuristicmethodbasedonextendedtruthtableswaspre-sented,greedilychoosingthedecompositionthatminimizestheresultingexpression.

ThequalityoftheresultingPSDKROsdependsonthevariableorderingappliedaswellasthegroupingofinputvariablesintheMVcase.In[13]aheuristicfrom[11]wasapplied(inapreprocessingstep)togroup2-valuedvariablesinto4-valuedvariables.In[7]dynamicreorderingstrategiesareshowntodrasticallyreducethe(2-valued)PSDKROsinmanycases.

4NewPSDKROMinimizationmethods

Inthissectionwefirstintroducepruningtechniquesbasedoncostestimationfor2-valuedPSDKROminimiza-tion,andshowhowbothexactandheuristicresultscanbeobtained.InSection4.2wepresenttheextensionto4-valuedPSDKROminimizationforheuristicresults,andfinallywegiveamethodforheuristic-valuedPSDKROminimizationinSection4.3.

4.12-valuedPSDKROMinimization

Totheoriginalalgorithm[13,3]wehaveaddedanum-berofnewfeatures;theuseofcostestimation,apruning

prodpsdkro(node,int)1if(==)return;

defined)return;2if(

3derivecofactors,andcompute=EXOR(,

,and4computecostestimates

5sortsuccessorsinincreasingcostorder6=psdkro(,);7(greedy)if()returnMAXINT;

=psdkro(,);8

9if(min(,))returnMAXINT;

=psdkro(,pf(,,));1011=++-max(,,);12return;

prodpsdkro);

4v(

4v(

)+psdkro)+psdkro

Figure4.Algorithmusingcostestimation.parameterandthepossibilitytoobtainheuristicresultsbyagreedyapproach(thelattertwoalsoappearsin[7]).

Wemakethefollowingobservations:TheOBDDrepre-sentationholdsaninitial(non-optimal)PSDKROsolution

)withhavingonlyShannondecompositions(

.Assumewehavecomputedtheexactcoststhecost

forand(forandrespectively),thenisapartof

max(,),i.e.,mustbelesscostlythesolutioniff

thanatleastoneothersuccessoror(seeFigure3(a)).Givenacostlimit“”,isapartofthesolutioniff

-min(,),sincethecostofsuchadecom-positionismin(,)+,whichinturnmustbelessthan

”(seeFigure3(b)).Ourhandsonexperiencesshow“

thatahighcostfororinmanycasesalsoleadstoahighcostfor.

TheseobservationsareexploitedbythealgorithmshowninFigure4.Theadditionalparameter“”givesacostlimitforthe(sub)functionunderconsideration.Thecost(i.e.,1-paths)oftheinitialOBDDrepresentationsfor,andgiveupperboundcostestimates,and(line4).Thesuccessorsareordered(line5)such

,i.e.,hasthelowestupperthat

bound,henceconsideredasthemostpromisingsuccessor(line6).Aseachdecomposition(S,pDornD)requiresatleastoneoforfurthercomputationcanbeabortedwhenmin(,)(line9).ByreturningMAXINT,thefunctionisensurednottobecomepartofthefinalresult.Thefunction“pf”(line10)combinesthetwoobservations(a)and(b)asthenewpruningvalue,i.e.,min(max(,),

-min(,)).Thisalgorithmfavorspromisingpartsofthesearchspaceandrejectspointlesscomputationsatanearlystagewithoutcompromisingthequalityoftheresult.However,fromourlastobservationabove,inspectingthemostpromisingsuccessorgivesaroughestimateofthecost.Thegreedyapproachinline7utilizesthisestimationtoheuristicallyabortunpromisingcalculations.ForeachnodetheminimalnumberofproducttermsneededfortherepresentationasaPSDKROisstoredinthevariable

.Thus,eachnodehastobeevaluatedonlyonce.Otherpruningaspects,simultaneousminimizationofliteral

prodpsdkromv(

,);

return

;

Figure6.MVPSDKROminimization.

4.4InfluenceofVariableOrdering

In[13]theeffectofDDvariableorderingwasconcludedbyenumeratingallpossibleorderingsforagivenfunctionandminimizingthecorrespondingPSDKROs.However,nomethodtoapproachtheorderingproblemwasreported.Ingeneraldynamicvariableordering[9]hasprovenusefultomanyDDproblems.In[7]dynamicreorderingstrategies(“movetotop”and“sifting”)areappliedto2-valuedPS-DKROminimization.Thefirstmethodseeksthebestbesttopvariableiterativelyuntilnofurtherimprovementisob-tained,whilethelattersiftseachvariabletothepositionthatresultsinalocalminima.Ingeneralthesiftingapproachisabletoderivebetterresultsatthecostofcomputationtime.Thesestrategiescanbeappliedtofindaheuristicor-deringbothfor2-andgeneral-valuedminimization.Inthe-valuedthediagram,2-valuedcase,theusingavariables)-valued“group”-move/siftarevariablesmoved/sifted(encodedby

method.togetherAsacostin

estimatefunctionwecanapplytheupperbound,i.e.,1-pathsinthe-valuedDDrepresentation.Tofindagroup-ingofthe2-valuedvariablesinto-valuedvariables,wecaninitiallyapply2-valuedreorderingtothediagram.

4.4.1Minimizationusing“Free”DDs

IfwerelaxthefixedorderingconstraintforPSDKROs,wecanapply“free”DDstotheminimization.InFigure7weoutlinethe“free”reorderingmethod.Thisapproachcom-binesreorderingwithminimization.Alsointhiscasewehavethechoiceofdifferentcostestimationfunctions.InSection5,weshowhow“free”minimizationgreatlycanimproveonPSDKROresults,andeveninsomecaseschal-lengesbestknownESOPs.

5ExperimentalResults

InthissectionwepresentexperimentalresultsforasetofMCNCbenchmarkfunctions.Allrun-timesaregiveninCPUsecondsonaSunUltra1workstationwith256MbRAM.AllexperimentshavebeencarriedoutontheBDDpackagefrom[15]andwesetaruntimelimitof1000CPUseconds.

prodfree

,);

return

mv(

Figure7.Freeminimization.

InafirstseriesofexperimentsgiveninTable1,wedemonstratetheeffectofpruningbytheuseofcostestima-tion.TheresultsareobtainedforthevariableorderinggivenfromthePLAbenchmarks.Toallowcomparisontoprevi-ouslyreportedbestknownresults[13,3](markedex),mul-tipleoutputfunctionsareencodedbyOutputSelection(OS)nodesplacedatthebottomofthediagram,thusensuringminimizationofalloutputssimultaneously[7].Columnsmarkedestandgreedyreporttheresultsfortheproposed2-valuedminimizer.ForcomparisoncolumnMVgivestheresultsforthegeneralMVPSDKROminimizerappliedtothe2-valuedcase.Thegreedyapproachobtainsminimalornearminimalresultswhilesavingcomputationalresources.InthenextsetofexperimentsgiveninTable2,weshowtheeffectof“free”orderingofnon-symmetricalbench-marks.IncolumnMINTthenumberofproductsforbestpreviouslyknown2-valuedESOPs[4]areshown.DuringreorderingeitherestorMVisappliedtogiveacostes-timate.WeareinmanycasesabletovastlyimproveonpreviouslyreportedPSDKROresults(Table1)andeveninsomecaseschallengebestknownESOPs,whilebeingmagnitudesfaster.InherentintheDDstructureisalsothepossibilityformulti-levelminimizationandsynthesis.Byalsoconsideringsingle-outputminimization[7]weexpecttofurtherimprovetheresults.

InthelastsetofexperimentsgiveninTable3weshowtheextensiontoMVPSDKROminimizationandreportthefirstresultsforupto16-valuedPSDKROs.“-”indicatesthattimelimitwasreached.“*”indicatesafirstexact4-valuedresult.TheinitialordersgivenbythePLAsareusedforinputgroupingandMVvariableorder.ColumnsestandMV,showtheheuristic4-VandthegeneralMVminimiza-tionresults.WhilethegreedysearchofexpansionusedinthegeneralMVminimizer(MV)consumesconsiderablylesscomputationalresources,thequalityoftheresultequalsthatoftheexhaustivesearchmethod(est).Columnsmarkedfreeshowstheresultofthe“free”reorderingmethod.NotethatthegroupingofinputvariablesintoMVvariablesre-mainsunchangedduringreordering.For8-and16-valuedminimizationthedrasticpruningofthesearchspacemaycompromisethequality,anda“grouping”approachfrome.g.2-valuedPSDKROsmaybeapplicable.

Thepresentedresultsaredirectlyapplicabletothecom-binedminimization,mappingandroutingmethodgiven

name

NumberofProducts

CPUTimeinSeconds

greedy

exgreedy5xp147

0.010.02

132132

0.110.01bc0180

5.352.22

1414

0.010.01

duke2108

25.0519.68

117137

2.310.34in742

0.170.13

3131

0.010.01intb500

0.710.80

754877

5.390.19rd5320

0.010.01

63127

0.010.01rd84107

0.010.01

4146

0.020.01t48113

0.010.01

9391247

1.820.18x6dn1045.401.78

est

est

MINT

5xp1400.0610.10add61320.51139.80bc017129.75742.17duke28490.84174.16in21176.74438.36in7352.4419.68inc310.0210.22intb3794.39774.61misex36429.8510744.99

sao2340.088.58t481130.0594.40tial6627.226779.55x6dn

99

7.88

520.81

Table2.Bestknownnumberofproducts.inSection2.2,e.g.

--LUTFPGAsaresynthesizedfrom4-valuedPSDKROs.BytheuseofcostestimationwecanprunethesearchspaceforMVPSDKROs,thusobtainresultsforpreviouslyintractableproblems.Furthermoreweproposea“free”DDbasedminimizationmethodfor2-levelexpressions,insomecaseschallengingbestknownESOPswhilebeingmagnitudesfaster.Itsapplicationtomulti-levelsynthesisisfocusofcurrentresearch.

References

[1]S.D.Brown,R.J.Francis,J.Rose,andZ.G.Vranesic.Field-ProgrammableGateArrays.KluwerAcademicPublisher,1992.[2]R.E.Bryant.Graph-basedalgorithmsforBooleanfunction

manipulation.IEEETrans.onComp.,35(8):677–691,1986.[3]R.Drechsler.PseudoKroneckerexpressionsforsymmetric

functions.InVLSIDesignConf.,pages511–513,1997.[4]T.Kozlowski,E.L.Dagless,andJ.M.Saul.Anen-hancedalgorithmfortheminimizationofexclusive-orsum-

name

16-V

ex

MV

7/10

43353212/713213213226/1116215014814/177522/29109868019/10969511026/104237367/931302915/739233535214/147476014445/3101077/32626138/436362110/443343016/199914/877654159439/5

93

89

88

因篇幅问题不能全部显示,请点此查看更多更全内容