您的当前位置:首页正文

七年级数学(上册)线段及角精选练习试题整理

2022-05-04 来源:星星旅游
 WORD格式整理版

线段和角 精选练习题

一.选择题(共22小题)

1.如图是某个几何体的展开图,该几何体是( ) A.圆柱

B.圆锥

C.圆台

D.四棱柱

2.如图,线段AD上有两点B、C,则图中共有线段( )

A.三条 B.四条 C.五条 D.六条

3.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有( ) A.1个 B.2个 C.3个 D.4个

4.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是( )

A.两点之间,直线最短 C.两点之间,线段最短

B.两点确定一条直线 D.经过一点有无数条直线

5.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为( ) A.2+(﹣2) B.2﹣(﹣2) C.(﹣2)+2 D.(﹣2)﹣2

6.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为( ) A.A2.5cm B.3cm C.4.5cm D.6cm

7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是( ) A.6cm B.10cm

C.6cm或10cm D.4cm或16cm

8.如图,在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB长为( )

学习好帮手

WORD格式整理版

A.1cm B.1.5cm C.2cm D.4cm

9.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有( ) ①AP=BP; ②BP=AB; ③AB=2AP; ④AP+PB=AB. A.1个 B.2个 C.3个 D.4个

10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的路程之和最小,那么该停靠点的位置应设在( ) A.点A B.点B C.AB之间 D.BC之间 11.若一个角为65°,则它的补角的度数为( ) A.25° B.35° C.115°

D.125°

的人步行到停靠点

12.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是( )

A.图① B.图② C.图③ D.图④

13.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为( ) A.20° B.50° C.70° D.30°

14.如图,在△ABC中,过点A作BC边上的高,正确的作法是( )

A. B. C. D.

15.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为( )

学习好帮手

WORD格式整理版

A.100° B.110° C.130° D.140°

大小

16.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的为( )

A.15° B.20° C.25° D.30°

17.一个角是这个角的余角的2倍,则这个角的度数是( ) A.30° B.45° C.60° D.75°

18.如图,∠1和∠2都是∠α的余角,则下列关系不正确的是( )

A.∠1+∠α=∠90° B.∠2+∠α=90° C.∠1=∠2 D.∠1+∠2=90°

19.如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A,B点,则此时两轮船行进路线的夹角∠AOB的度数是( ) A.165°

B.155°

C.115°

D.105°

20.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB=( ) A.40° B.60° C.120°

D.135°

21.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,则∠COE=( ) A.65° B.70° C.75° D.80°

22.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE平分∠BOC,则∠DOE( ) A.一定是钝角 B.一定是锐角 C.一定是直角 D.都有可能 二.填空题(共3小题)

23.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到 个三

学习好帮手

WORD格式整理版

角形.

24.如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于 度.

25.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为 度. 三.解答题(共12小题)

26.如图,四边形ABCD,在四边形内找一点O,使得线段AO、BO、CO、DO的和最小.(画出即可,不写作法)

27.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.

28.如图,C,D是线段AB上的两点,已知AC:CD:DB=1:2:3,MN分别是AC,BD的中点,且AB=36cm,求线段MN的长.

29.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.

学习好帮手

WORD格式整理版

30.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.

31.填空,完成下列说理过程

如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC. (1)求∠DOE的度数;

(2)如果∠COD=65°,求∠AOE的度数.

32.如图,O,D,E三点在同一直线上,∠AOB=90°.

(1)图中∠AOD的补角是 ,∠AOC的余角是 ; (2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.

33.如图,已知∠AOB=155°,∠AOC=∠BOD=90°. (1)写出与∠COD互余的角;

学习好帮手

WORD格式整理版

(2)求∠COD的度数;

(3)图中是否有互补的角?若有,请写出来.

34.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°. (1)若∠BOE=70°,求∠AOF的度数;

(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.

35.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC. (1)填空:与∠AOE互补的角是 ; (2)若∠AOD=36°,求∠DOE的度数;

(3)当∠AOD=x°时,请直接写出∠DOE的度数.

36.已知,如图,∠AOC=90°,∠DOE=90°,∠AOB=56°,E,O,B三点在同一条直线上,OF平分∠DOE,求∠COF的度数.

学习好帮手

WORD格式整理版

37.如图,∠AOB=120°,射线OD是∠AOB的角平分线,点C是∠AOB外部一点,且∠AOC=90°,点E是∠AOC内部一点,满足∠AOC=3∠AOE. (1)求∠DOE的度数;

(2)请通过计算,找出图中所有与∠AOE互余的角.

学习好帮手

WORD格式整理版

试题解析

一.选择题(共22小题)

1.如图是某个几何体的展开图,该几何体是( )

A.圆柱 B.圆锥 C.圆台 D.四棱柱

【分析】侧面为长方形,底边为2个圆形,故原几何体为圆柱.

2.如图,线段AD上有两点B、C,则图中共有线段( )

A.三条 B.四条 C.五条 D.六条

【分析】由图知,线段有AB,BC,CD,AC,BD,AD.

3.下列语句:①不带“﹣”号的数都是正数;②如果a是正数,那么﹣a一定是负数;③射线AB和射线BA是同一条射线;④直线MN和直线NM是同一条直线,其中说法正确的有( ) A.1个 B.2个 C.3个 D.4个

【分析】根据正数、负数、直线、射线的定义和表示方法对各小题分析判断后利用排除法求解.

4.如图,某同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长小,能正确解释这一现象的数学知识是( )

学习好帮手

WORD格式整理版

A.两点之间,直线最短 C.两点之间,线段最短

B.两点确定一条直线 D.经过一点有无数条直线

【分析】根据线段的性质,可得答案.

5.若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为( ) A.2+(﹣2) B.2﹣(﹣2) C.(﹣2)+2 D.(﹣2)﹣2 【分析】根据数轴上两点间距离的定义进行解答即可.

6.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为( )

A.A2.5cm B.3cm C.4.5cm D.6cm

【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.

7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是( ) A.6cm B.10cm

C.6cm或10cm D.4cm或16cm

【分析】由于点C的位置不确定,故应分点C在AB之间与点C在AB外两种情况进行讨论.

8.如图,在直线l上顺次取A、B、C三点,使得AB=5cm,BC=3cm,如果O是线段AC的中点,那么线段OB长为( )

学习好帮手

WORD格式整理版

A.1cm B.1.5cm C.2cm D.4cm

【分析】由已知条件可知,AB+BC=AC,又因为O是线段AC的中点,则OB=AB﹣AO,故OB可求.

9.已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有( ) ①AP=BP; ②BP=AB; ③AB=2AP; ④AP+PB=AB. A.1个 B.2个 C.3个 D.4个

【分析】根据题意画出图形,根据中点的特点即可得出结论.

10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( )

A.点A B.点B C.AB之间 D.BC之间

【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.

11.若一个角为65°,则它的补角的度数为( ) A.25° B.35° C.115°

D.125°

【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.

12.如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是( )

学习好帮手

WORD格式整理版

A.图① B.图② C.图③ D.图④

【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.

13.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为( )

A.20° B.50° C.70° D.30°

【分析】根据图形得出∠1+∠2=90°,然后根据∠1的度数比∠2的度数大50°列出方程求解即可.

14.如图,在△ABC中,过点A作BC边上的高,正确的作法是( )

A. B. C. D.

【分析】从三角形的一个顶点向它的对边引垂线,从顶点到垂足之间的线段是三角形的高,据此作高.

15.如图所示,已知∠AOC=∠BOD=70°,∠BOC=30°,则∠AOD的度数为( )

学习好帮手

WORD格式整理版

A.100° B.110° C.130° D.140°

【分析】根据图形和题目中的条件,可以求得∠AOB的度数和∠COD的度数,从而可以求得∠AOD的度数.

16.将一副直角三角尺如图放置,若∠BOC=160°,则∠AOD的大小为( )

A.15° B.20° C.25° D.30°

【分析】依据∠COB=∠COD+∠AOB﹣∠AOD求解即可.

17.一个角是这个角的余角的2倍,则这个角的度数是( ) A.30° B.45° C.60° D.75°

【分析】先表示出这个角的余角为(90°﹣α),再列方程.

18.如图,∠1和∠2都是∠α的余角,则下列关系不正确的是( )

A.∠1+∠α=∠90° B.∠2+∠α=90° C.∠1=∠2 D.∠1+∠2=90° 【分析】根据互为余角的两个角的和等于90°和同角的余角相等解答.

19.如图,两轮船同时从O点出发,一艘沿北偏西50°方向直线行驶,另一艘沿南偏东25°方向直线行驶,2小时后分别到达A,B点,则此时两轮船行进路线的夹角∠AOB的度数是( )

学习好帮手

WORD格式整理版

A.165° B.155° C.115° D.105°

【分析】根据题意可得:∠1=50°,∠2=25°,再根据角的和差关系可得答案.

20.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB=( )

A.40° B.60° C.120° D.135°

【分析】设∠AOC=x,则∠BOC=2x,则∠AOD=1.5x,最后,依据∠AOD﹣∠AOC=∠COD列方程求解即可.

21.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°,则∠COE=( )

A.65° B.70° C.75° D.80°

【分析】首先由角平分线定义求得∠COD的度数,然后根据∠COE=∠DOE﹣∠COD即可求得∠COE的度数.

22.如图,O是直线AB上的一点,过点O任意作射线OC,OD平分∠AOC,OE平分∠BOC,则∠DOE( )

学习好帮手

WORD格式整理版

A.一定是钝角 B.一定是锐角 C.一定是直角 D.都有可能

【分析】直接利用角平分线的性质得出∠AOD=∠DOC,∠BOE=∠COE,进而得出答案.

二.填空题(共3小题)

23.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到 6 个三角形.

【分析】从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成(n﹣2)个三角形.

24.如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于 135 度.

【分析】根据平角和角平分线的定义求得.

25.如图,点O在直线AB上,射线OD平分∠AOC,若∠AOD=20°,则∠COB的度数为 140 度.

【分析】根据角平分线的定义得到∠AOC=2∠AOD=40°,根据平角的定义计算即可.

学习好帮手

WORD格式整理版

三.解答题(共12小题)

26.如图,四边形ABCD,在四边形内找一点O,使得线段AO、BO、CO、DO的和最小.(画出即可,不写作法)

【分析】要确定点O的位置,根据“两点之间,线段最短”只需要连接AC,BD,交点即为所求.

27.如图,A、B是公路L两旁的两个村庄,若两村要在公路上合修一个汽车站,使它到A、B两村的距离和最小,试在L上标注出点P的位置,并说明理由.

【分析】根据线段的性质:两点之间线段最短,即可得出答案.

28.如图,C,D是线段AB上的两点,已知AC:CD:DB=1:2:3,MN分别是AC,BD的中点,且AB=36cm,求线段MN的长.

【分析】根据比例设AC=xcm,CD=2xcm,DB=3xcm,然后根据AC的长度列方程求出x的值,再根据线段中点的定义表示出CM、DN,然后根据MN=CM+CD+DN求解即可.

29.如图,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.

学习好帮手

WORD格式整理版

【分析】因为点M是AC的中点,则有MC=AM=AC,又因为CN:NB=1:2,则有CN=BC,故MN=MC+NC可求.

30.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.

【分析】直接利用周角的定义得出∠AOC=120°,进而利用已知得出答案.

31.填空,完成下列说理过程

如图,点A,O,B在同一条直线上,OD,OE分别平分∠AOC和∠BOC. (1)求∠DOE的度数;

(2)如果∠COD=65°,求∠AOE的度数.

【分析】(1)首先根据角平分线定义可得∠COD=∠AOC,∠COE=∠BOC,然后再根据角的和差关系可得答案;

(2)首先计算出∠BOE的度数,再利用180°减去∠BOE的度数可得答案.

32.如图,O,D,E三点在同一直线上,∠AOB=90°.

(1)图中∠AOD的补角是 ∠AOE ,∠AOC的余角是 ∠BOC ; (2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.

学习好帮手

WORD格式整理版

【分析】(1)根据互余和互补解答即可;

(2)利用角平分线的定义和平角的定义解答即可.

33.如图,已知∠AOB=155°,∠AOC=∠BOD=90°. (1)写出与∠COD互余的角; (2)求∠COD的度数;

(3)图中是否有互补的角?若有,请写出来.

【分析】根据余角和补角的概念进行计算即可.

34.如图,直线AB.CD相交于点0,OE平分∠BOC,∠COF=90°. (1)若∠BOE=70°,求∠AOF的度数;

(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.

【分析】(1)根据角平分线的定义求出∠BOC的度数,根据邻补角的性质求出∠AOC的度数,根据余

学习好帮手

WORD格式整理版

角的概念计算即可;

(2)根据角平分线的定义和邻补角的性质计算即可.

35.如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC. (1)填空:与∠AOE互补的角是 ∠BOE、∠COE ; (2)若∠AOD=36°,求∠DOE的度数;

(3)当∠AOD=x°时,请直接写出∠DOE的度数.

【分析】(1)先求出∠BOE=∠COE,再由∠AOE+∠BOE=180°,即可得出结论; (2)先求出∠COD、∠COE,即可得出∠DOE=90°;

(3)先求出∠AOC、COD,再求出∠BOC、∠COE,即可得出∠DOE=90°.

36.已知,如图,∠AOC=90°,∠DOE=90°,∠AOB=56°,E,O,B三点在同一条直线上,OF平分∠DOE,求∠COF的度数.

【分析】依据同角的余角相等,可得∠COD=∠AOB=56°,再根据OF平分∠DOE,∠DOE=90°,即可得到∠DOF=∠DOF=45°,最后依据∠COF=∠COD+∠DOF进行计算即可.

37.如图,∠AOB=120°,射线OD是∠AOB的角平分线,点C是∠AOB外部一点,且∠AOC=90°,点E是∠AOC内部一点,满足∠AOC=3∠AOE.

学习好帮手

WORD格式整理版

(1)求∠DOE的度数;

(2)请通过计算,找出图中所有与∠AOE互余的角.

【分析】(1)根据角平分线的性质可得∠BOD=∠AOD=∠AOB=60°,再计算出∠AOE的度数,然后可得∠DOE的度数;

(2)根据余角定义进行分析即可.

学习好帮手

因篇幅问题不能全部显示,请点此查看更多更全内容