目 录
1、编制依据及规范标准 .............................................. 4
1.1、编制依据 .................................................. 4 1.2、规范标准 ................................................... 4 2、主要技术标准及设计说明 .......................................... 4
2.1、主要技术标准 ............................................... 4 2.2、设计说明 ................................................... 4
2.2.1、桥面板................................................ 5 2.2.2、工字钢纵梁............................................ 5 2.2.3、工字钢横梁............................................ 5 2.2.4、贝雷梁................................................ 5 2.2.5、桩顶分配梁............................................ 5 2.2.6、基础.................................................. 6
2.2.7、附属结构 ............................................................................................................... 6
3、荷载计算 ........................................................ 6
3.1、活载计算 ................................................... 6 3.2、恒载计算 ................................................... 7 3.3、荷载组合 ................................................... 7
4、结构计算 ........................................................ 7
4.1、桥面板计算 ................................................. 8
4.1.1、荷载计算.............................................. 8 4.1.2、材料力学性能参数及指标................................ 9 4.1.3、力学模型.............................................. 9 4.1.3、承载力检算............................................ 9 4.2、工字钢纵梁计算 ............................................ 10
4.2.1、荷载计算............................................. 10 4.2.2、材料力学性能参数及指标............................... 11 4.2.3、力学模型............................................. 11 4.2.4、承载力检算........................................... 11 4.3、工字钢横梁计算 ............................................ 13
4.3.1、荷载计算............................................. 13 4.3.2、材料力学性能参数及指标............................... 13 4.3.3、力学模型............................................. 14 4.3.4、承载力检算........................................... 14 4.4、贝雷梁计算 ................................................ 15
4.4.1、荷载计算............................................. 15 4.4.2、材料力学性能参数及指标............................... 16
4.4.3、力学模型............................................. 16 4.4.4、承载力检算........................................... 17 4.5、钢管桩顶分配梁计算 ........................................ 18
4.5.1、荷载计算............................................. 18 4.5.3、力学模型............................................. 19 4.5.4、承载力检算........................................... 19 4.6、钢管桩基础计算 ............................................ 19
4.6.1、荷载计算............................................. 19 4.6.2、桩长计算............................................. 20 4.7、桥台计算 .................................................. 20
4.7.1、基底承载力计算....................................... 21
附件: 栈桥计算书
1、编制依据及规范标准
1.1、编制依据
(1)、现行施工设计标准 (2)、现行施工安全技术标准
1.2、规范标准
(1)、公路桥涵设计通用规范(JTGD60-2004) (2)、公路桥涵地基与基础设计规范(JTJ024-85) (3)、公路桥涵钢结构及木结构设计规范(JTJ 025-86)
2、主要技术标准及设计说明
2.1、主要技术标准
桥面宽度:4.5m
设计荷载:75t履带吊(负载10t)及公路—Ⅰ级汽车荷载 栈桥全长:105m、51m
起止里程:K18+980.5~K19+100、K19+320~K19+380,
2.2、设计说明
根据本工程特点和现场地形水文条件,考虑施工周期和地方资源,跨后横河及七工段直河施工便道采用下承式受力栈桥、路基相结合的结构形式,中间考虑
Ⅸ通航要求。栈桥起止里程K18+980.5~K19+100、K19+320~K19+380,设计全长分别96m、48m.采用跨径布置形式:6×12m+2×10.5m、2×12m+2×10.5m.栈桥设计荷载主要考虑结构自重和75t履带吊(负载10t)及公路—Ⅰ级汽车荷载荷载。现将各部分结构详述如下: 2.2.1、桥面板
栈桥桥面板材料为A3钢板,钢板厚度为6mm,钢板焊接在中心间距150mm的I12.6a工字钢纵梁上。 2.2.2、工字钢纵梁
桥面板下设置I12.6a工字钢纵梁,工字钢纵梁在车轮通过区域中心间距150mm,其余设置为300m顺桥向设置。I12.6a工字钢纵梁搁置在中心间距1500mm的I32a工字钢横梁上。I12.6a纵梁与桥面板及横梁均焊接牢固。 2.2.3、工字钢横梁
I12.6a工字钢纵梁下设置中心间距1500mm的I32a工字钢横梁,横向穿过贝雷纵梁的下弦杆。I32a横梁通过U型卡与贝雷片下弦杆连接。 2.2.4、贝雷梁
栈桥两侧采用每侧1组三排单层不加强型贝雷片作为承重梁。每三片贝雷片通过450mm标准连接片连接成一组;每组贝雷片设上下均设平联。两侧纵梁在贝雷片底部通过自制[14a连接系连接,保证贝雷梁的整体稳定性。 2.2.5、桩顶分配梁
贝雷梁支承在2根I25a工字钢分配梁上,2根I25a分配梁间采用间断焊接。分配梁嵌入钢管桩内530mm,以保证分配梁的横向稳定性。贝雷片与分配梁仍采用U型卡连接牢固。
2.2.6、基础 2.2.6.1、桥台
每处栈桥设重力式桥台,桥台基础底面尺寸为6200×1800mm,其余为钢管桩基础。桥台台帽顶贝雷片位置预埋δ=10mm的钢板,防止压碎桥台混凝土。桥台基础采用C20混凝土,设一层Φ16钢筋网片,台背回填宕渣,分层碾压填筑。
2.2.6.2、钢管桩基础
基础采用Φ530×8mm钢管桩,每排3根,中心间距2000mm。钢管桩间采用[14a连接系连接,桩顶设凹槽,2根I25a工字钢分配梁嵌入钢管桩中。 2.2.7、附属结构
栈桥栏杆立柱采用75角钢焊接在I20a横梁上,立柱间距1500mm,立柱间采用Φ20钢筋和75角钢连接。
栈桥两侧每隔10m设置一道警示灯,以便夜间起到警示作用,防止船舶撞击栈桥。
3、荷载计算
3.1、活载计算
本栈桥主要供混凝土罐车、各种机械设备运输及75t履带吊(负载10t)走行,因而本栈桥荷载按每孔一辆75t履带吊(负载10t)荷载及公路—Ⅰ级汽车荷载分别检算,则活载为: 履带吊:G=850kN;
公路—Ⅰ级汽车荷载:G=550kN。
3.2、恒载计算
本栈桥恒载主要为型钢桥面系、贝雷梁及墩顶分配梁等结构自重,见表-1
表-1
荷载集度 序号 结构名称 (kN/m) 1 2 3 桥面板 I12.6a纵梁 I32a横梁 桥面系合计 4 贝雷梁 2.12 2.71 2.95 8.49 6.0 顺桥向 顺桥向 顺桥向 顺桥向 顺桥向 备注 3.3、荷载组合
另考虑冰雪等偶然荷载作用,故按以下安全系数进行荷载组合:恒载1.2,活载1.3。根据《公路桥涵钢结构及木结构设计规范》规定:临时结构容许应力可提高1.3(组合Ⅰ)、1.4(组合Ⅱ~Ⅴ)。
4、结构计算
栈桥结构如下图所示,根据受力情况从上到下的原则依次计算如下:
4.1、桥面板计算
桥面板采用δ=6mm钢板,钢板下设中心间距300mm和150mm的I2.6a工字钢纵梁,桥面板净跨径为22.6cm(I12.6a工字钢翼板宽度为74mm),桥面板与工字钢纵梁间断焊接,桥面板计算跨径按22.6mm计。 4.1.1、荷载计算
履带吊机履带宽度(760mm)及公路—Ⅰ级汽车中、后轮宽度(600mm)均大于工字钢纵梁间距,故履带吊车及公路—Ⅰ级汽车荷载后轮荷载直接作用在工字钢纵梁上,桥面板不作该种检算,仅对公路—Ⅰ级汽车荷载前轮作用于桥面板
跨中进行检算。根据《公路桥涵设计通用规范》(JTG D60-2004)车辆荷载前轴轴重取30kN,前轮着地宽度及长度为0.3m×0.2m,故按前轴单胎重作为均布荷载计算。
P=30÷2=15kN
q1.3150.365kN/m (单胎宽b按0.3米计)
4.1.2、材料力学性能参数及指标
取0.2m板宽(顺桥向长度),δ=6mm钢板进行计算:
bh20.20.0062W3.6106m3
66bh30.20.0063I3.6109m3
1212Abh0.20.0060.0012m2
EI2.110113.6109756Nm2
4.1.3、力学模型
4.1.3、承载力检算
采用清华大学SM Solver 进行结构分析:
Mmax0.41kNm Qmax7.35kN
a、强度检算
Mmax0.41106113.9MPa1451.4215MPa,合格; W3.6103maxmaxQmax7.351033.1MPa125MPa,合格; A1200b、刚度检算
f0.5mm,临时结构刚度对结构正常使用及安全运营影响不大,故可
max采用。
4.2、工字钢纵梁计算
I12.6a工字钢纵梁焊接于间距1500mm的I32a工字钢横梁上,按三跨连续梁检算。 4.2.1、荷载计算
分别按75t履带吊(负载10t)及公路—Ⅰ级汽车荷载验算,I12.6a工字钢纵梁自重g0.142kN/m,桥面板自重不计。
4.2.1.1、75t履带吊荷载
75t履带吊履带长宽按4.66m×0.76m计算,自重850kN,顺桥向荷载集度:
q1850(24.66)91.2kN/m ,工字钢纵梁中心间距300mm和150mm,最不利
情况应为两根工字钢纵梁受力。
则均布荷载为:qq1g1.391.21.20.142118.8kN/m。 4.2.1.2、公路—Ⅰ级汽车荷载
根据《公路桥涵设计通用规范》(JTG D60-2004)相关规定,公路—Ⅰ级汽车荷载为550kN,(布置图见I12.6a工字钢纵梁力学模型),按集中力计算。汽车轴重:P前=1.330kN=39KN,P中21.3120156kN,P后21.3140182kN,轴距:3.0m+1.4m+7m+1.4m。
4.2.2、材料力学性能参数及指标
I12.6a工字钢:
I4.88106mm4 W0.77105mm3
A1810mm2
EI2.110114.881061.03106Nm2
4.2.3、力学模型
4.2.3.1、履带吊荷载作用力学模型:
4.2.3.2、公路—Ⅰ级汽车荷载作用力学模型:
4.2.4、承载力检算
采用清华大学SM Solver 进行结构分析:
4.2.4.1、履带吊荷载作用下I12.6a工字钢纵梁检算
Mmax28.11kNm Qmax138.5kN
a、强度检算
Mmax28.11106182.5MPa215MPa,合格; W20.77105maxmaxQmax13810338.2MPa125MPa,合格; A21810b、刚度检算
fmax2.3mm15003.75mm,合格。 4004.2.4.2、公路—Ⅰ级汽车荷载作用下I12.6a纵梁检算
Mmax37.1kNm Qmax182.4kN
a、强度检算
Mmax37.1106120.5MPa215MPa,合格; W40.77105maxmaxQmax18210325.1MPa125MPa,合格; A41810b、刚度检算
fmax0.3mm15003.75mm,合格。 400
4.3、工字钢横梁计算
横梁采用I32a工字钢,工字钢横梁安装在6组中心间距4950mm的贝雷梁的下弦杆上,横梁与工字钢用U型螺栓锁定。(每组贝雷梁由三片间距225mm的贝雷片拼组而成)。 4.3.1、荷载计算
I32a工字钢横梁荷载按75t履带吊(负载10t)及公路—Ⅰ级汽车荷载分别验算;恒载为I12.6a纵梁及桥面板自重,按均布荷载考虑,每根I32a横梁承受恒载:
g1.3[(1.54.50.0067850251.514.2)4.510]2.46kN/m。
4.3.1.1、75t履带吊荷载
由于不同厂家的产品履带中心距不尽相同,故按最不利情况检算,即:履带作用于跨中,履带长度按4660mm计,则履带荷载至少由4根I32a工字钢横梁承受。
按集中力检算:P1.3850/2553kN。 4.3.1.2、公路—Ⅰ级汽车作用下荷载
汽车后轮纵向间距1.4m,按两后轮作用在跨中考虑,集中力大小P70kN。 4.3.2、材料力学性能参数及指标
I32a工字钢:
I1.108108mm4
W6.92105mm3
A6700mm2
EI2.1101111.081052.3268107Nm2
4.3.3、力学模型
4.3.3.1、75t履带吊作用力学模型
4.3.3.2、公路—Ⅰ级汽车荷载作用力学模型
4.3.4、承载力检算
采用清华大学SM Solver 进行结构分析: 4.3.4.1、履带吊荷载作用下I32a工字钢横梁检算
Mmax422kNm Qmax2344.2kN
a、强度检算
Mmax422106152.5MPa215MPa,合格; 5W46.9210maxmaxQmax234410387.5MPa125MPa,合格; A46700
b、刚度检算
fmax2.7mm450011.25mm,合格。 400最大支反力:Fmax725.5kN。
4.3.4.2、公路—Ⅰ级汽车荷载作用下I32a工字钢横梁检算
Mmax85.3kNm Qmax473.5kN
a、强度检算
Mmax8.53107123.3MPa215MPa,合格; W6.92105maxmaxQmax473.510370.7MPa125MPa,合格; A6700b、刚度检算
fmax2.28mm450011.3mm,合格。 400最大支反力:Fmax612.5kN。
4.4、贝雷梁计算
贝雷梁为两组,每组3片,共6片。贝雷梁按单孔1台75t履带吊及单孔一辆公路—Ⅰ级汽车荷载分别验算,均按三跨连续梁检算。 4.4.1、荷载计算
贝雷梁以上恒载为桥面板、I12.6a纵梁及I32a横梁自重,其荷载大小为:
g1.2[0.01(14.50.006785012514.20.6752.75.8)]9.26kN/m4.4.1.1、75t履带吊作用下荷载计算
履带长度按4.66m计算,则均布荷载大小为:q1.34.4.1.2、公路—Ⅰ级汽车荷载计算
汽车自重荷载:P前=30kN,P中2120kN,P后2140kN,安全系数为1.3。轴距:3.0m+1.4m+7m+1.4m。 4.4.2、材料力学性能参数及指标
3000mm×1500mm单排单层不加强贝雷桁片:
850237kN/m。 4.66M788.2kNm Q245.2kN
I2.5109mm4
W3.57106mm4
EI2.110112.51035.25108Nm2
4.4.3、力学模型
4.4.3.1、75t履带吊作用力学模型
4.4.3.2、公路—Ⅰ级汽车荷载作用力学模型
4.4.4、承载力检算
采用清华大学SM Solver 进行结构分析: 4.4.4.1、履带吊荷载作用下贝雷梁检算
Mmax1076.8kNm Qmax607.4kN
最大支反力:Fmax752.7kN a、强度检算
Mmax1076.8kNmM67884729kNm,合格;
Qmax607.4kN6245kN1470kN,合格;
b、刚度检算
fmax20.2mm1200030mm,合格。 4004.4.4.2、公路—Ⅰ级汽车荷载作用下贝雷梁检算
Mmax457.6kNm Qmax410kN
最大支反力:Fmax504kN a、强度检算
Mmax457.6kNmM67884729kNm,合格;
Qmax410kN6245kN1470kN,合格;
b、刚度检算
fmax9.4mm1200030mm,合格。 4004.5、钢管桩顶分配梁计算
钢管桩顶分配梁采用2I25a工字钢,工字钢分配梁嵌于钢管桩内150mm并与之焊接牢固,分配梁与贝雷梁用U型卡连接。 4.5.1、荷载计算
承重梁一作为便桥结构的主要承重结构,是便桥结构稳定安全的生命线,采用的型材为2I25a。根据第5.5节对贝雷梁的计算分析,得到最大节点反力为752.7kN。下面对最不利情况下,承重梁一的内力情况进行建模分析。F752.7kN和贝雷片自重作集中力验算,集中力大小为:P752.71.243767.1kN。 4.5.2、材料力学性能参数及指标
I25a工字钢:
I5.02108mm4
W4.02105mm3
A4850mm2
EI2.110115.021041.054108Nm2
4.5.3、力学模型
4.5.4、承载力检算
采用清华大学SM Solver 进行结构分析:
Mmax28.8kNm Qmax127.94kN
a、强度检算
Mmax28.810635.8MPa203MPa,合格; W24.02105maxmaxQmax127.9410313.2MPa119MPa,合格; A24850b、刚度检算
fmax0.01mm19004.75mm,合格。 400最大支反力:Fmax255.7kN
4.6、钢管桩基础计算
本栈桥钢管桩基础每墩采用单排四根Φ530×8mm钢管,钢管间用[14a槽钢连接形成排架。 4.6.1、荷载计算
本便桥结构基础采用单排4根钢管桩桩基础,桩顶最大承载力为履带吊负重
驶到桩顶时,最大荷载为约255.7kN。考虑本项目的地质条件及设计提供的相关地质资料。施工中,理论设计值作为钢管桩施工的参考,施工选用振动锤进行施打钢管桩,实际入土深度结合现场实际地质情况确定。 4.6.2、桩长计算
根据《港口工程桩基规范》(JTJ254-98)第4.2.4条:
Qd=1(U∑qfili+qRA) γR式中:
Qd—单桩垂直极限承载力设计值(kN);
R—单桩垂直承载力分项系数,取1.45;
U—桩身截面周长(m),本处为530mm*8mm钢管桩取1.664m;
qfi—单桩第i层土的极限侧摩阻力标准值(kPa);
li—桩身穿过第i层土的长度(m);
qR—单桩极限桩端阻力标准值(kPa);
A— 桩身截面面积; 地质情况统计如下:
地基土容岩土编号 土层名称 许承载力(kPa) (kPa) 1 2 3 粉土 粉砂 淤泥质粉质黏土 30~55(取40) 35~55(取45) 15~25(取20) 1.31 -3.39 -13.69 -3.39 -13.69 -16.59 4.7 10.3 2.9 (m) (m) 桩周土极限摩力 顶面 底面高程 层厚(m) 根据上述验算可知单桩最大承受荷载约255.7kN。现假设桩底打入粉砂LXm,带入上述计算公式中(因端部摩阻力很小,计算时不予考虑),则有:
(单排4根桩)255.7kN=1/1.45×1.664×(40×4.7+45×LX)求解得:LX=0.2m。
由计算可知,钢管桩打入粉砂层0.2米。桩底标高为-3.59m,桩顶标高为+8.8m,则单根桩总长为12.39m。 4.6.3 钢管桩稳定性计算
水深3m,按1m冲刷深度考虑,则可假定钢管桩悬臂固结点在-8.8m处,桩顶标高取+8.8m,钢管悬臂长度为17.6m,根据压杆原理,满足稳定要求。
L17.633.240,D0.5304.7、桥台计算
桥台底面尺寸为6200mm×2000mm,基础高度60mm,每30cm一个台阶;台背高度600mm,长×厚=6200mm×500mm,如下图所示:
N2Φ12@20cmN1Φ12@10cm片石48-0.15m
4.7.1、基底承载力计算
桥台位于K18+935.5附近处,采用此处地质资料,地基容许应力为
0130KPa。
4.7.1.1、荷载计算
恒载为桥台自重:G(6.220.36.25.20.3+6.20.60.5)24366kN;
活载按75t履带吊(负载10t)荷载直接作用在桥台上计算为800kN; 荷载组合:P1.23661.38001479.2kN; 4.7.1.2、基底承载力计算
P1479.2119.3KPa0130KPa,合格。 A6.22.0
因篇幅问题不能全部显示,请点此查看更多更全内容