inDenseSensorNetworks
BBNPrithwishTechnologies
Basu
10MoultonSt.,Cambridge,MA02138
pbasu@bbn.com
ABSTRACT
Energyefficiencyisanimportantdesigncriteriaforthede-velopmentofsensornetworkingprotocolsinvolvingdatadis-seminationandgathering.In-networkprocessingofsensordata,aggregation,transmissionpowercontrolinradios,andperiodiccyclingofnodewake-upschedulesaresometech-niquesthathavebeenproposedinthesensornetworkinglit-eratureforachievingenergyefficiency.Owingtothebroad-castnatureofthewirelesschannelmanynodesinthevicin-ityofasendernodemayoverhearitspackettransmissionseveniftheyarenottheintendedrecipientsofthesetrans-missions.Receptionofthesetransmissionscanresultinun-necessaryexpenditureofbatteryenergyoftherecipients.Inthispaper,weinvestigatetheimpactofoverhearingtrans-missionsontotalenergycostsduringdatagatheringanddisseminationandattempttominimizethemsystematically.Wemodeltheminimumenergydatagatheringproblemasadirectedminimumenergyspanningtreeproblemwheretheenergycostofeachedgeinthewirelessconnectivitygraphisaugmentedbytheoverhearingcostofthecorrespondingtransmission.Weobservethatindensesensornetworks,overhearingcostsconstituteasignificantfractionofthetotalenergycostandthatcomputingtheminimumspanningtreeontheaugmentedcostmetricresultsinenergysavings,es-peciallyinnetworkswithnon-uniformspatialnodedistribu-tion.Wealsostudytheimpactofthisnewmetriconthewellknownenergy-efficientdissemination(alsocalledbroadcast-ing)algorithmsformultihopwirelessnetworks.Weshowviasimulationthatthroughthisaugmentedcostmetric,gainsinenergyefficiencyof10%ormorearepossiblewithoutad-ditionalhardwareandminimaladditionalcomplexity.
CategoriesandSubjectDescriptors
C.2.1[Computer-CommunicationNetworks]:NetworkArchitectureandDesign—WirelessCommunication;G.2.2[MathematicsofComputing]:DiscreteMathematics—Graphalgorithms,Networkproblems
Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthatcopiesarenotmadeordistributedforprofitorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthefirstpage.Tocopyotherwise,torepublish,topostonserversortoredistributetolists,requirespriorspecificpermissionand/orafee.
IPSN’04,April26–27,2004,Berkeley,California,USA.Copyright2004ACM1-58113-846-6/04/0004...$5.00.
BBNJasonTechnologies
Redi
10MoultonSt.,Cambridge,MA02138
redi@bbn.com
GeneralTerms
Algorithms,Performance
Keywords
Sensornetworks,energyefficiency,datagathering,datadis-semination/broadcast,overhearing
1.INTRODUCTION
Explosivegrowthinembeddedcomputingandrapidad-vancesinlowpowerwirelessnetworkingtechnologiesarefuelingthedevelopmentofwirelesssensornetworks.Thesedynamicandadaptivedistributedsystemshaveapplicationsrangingfrommonitoringwild-lifehabitats,inventoryman-agement,datacollection,andmilitaryandspaceapplica-tions.Sensornetworksarecomposedoflowpowersensornodescapableofsensingparticularphysicalphenomenaintheirvicinityandcommunicatingamongthemselvesusingwirelesstransceivers.Duetothelargenumberofnodes,theirlowcost,ortheamountoftimetheyareexpectedtobedeployedinapotentiallyinaccessiblearea1,energy-efficiencybecomesperhapsthemostimportantdesigncri-teriaforsensornetworkingprotocols.Amajorityofsensornetworkingapplicationsinvolvedatagatheringanddissemi-nation;henceenergyefficientmechanismsofprovidingtheseservicesbecomecritical.
Numerousresearchershaverecentlysuggestedavarietyofmechanismsforachievingenergy-efficiencyinsensornet-works,namely,in-networkprocessingofsensordata[7],ag-gregation[10],transmissionpowercontrolinradios,andpe-riodiccyclingofnodes’activityschedules[2].Typically,thetotalenergycostofatransmittedbitiscomputedtobethecostduetotransmissionoverawirelesschanneloveracertaindistanceplusthecostduetoreceptionbythedes-tinationradiohardware[8].However,duetothebroadcastnatureofthewirelesschannelmanynodesinthevicinityofasendernodeoverhearitspackettransmissionsevenifthosearenottheintendedrecipientsofthesetransmissions[14].Thisredundantreceptionresultsinunnecessaryexpenditureofbatteryenergyoftherecipients.Turningoffneighboringradiosduringacertainpoint-to-pointwirelesstransmissioncanmitigatethiscost[14,19].
Inthispaper,weinvestigatetheenergy-costimpactofoverhearingpackettransmissionsduringdatagatheringanddisseminationinsensornetworks.Wemodeltheminimumenergydatagatheringproblemasthatofcomputingadi-1
Thus,rechargingthesensorsmaynotbeanoption.
55555616Prim’s Algorithm
61Directed GraphOptimal In−arborescence
Figure1:Minimumcostin-arborescenceproblem:Weobservethatagreedyalgorithmissub-optimalondirectedgraphs.Intheabovefiguresweareconsideringthedatagatheringproblemwheretheleft-mostnodeineachsubfigureisgeneratingthegatheringtreefortheotherthreenodes.rectedminimumenergyrootedspanningarborescenceofawirelessnetworkwheretheenergycostofeachedgehasbeenaugmentedbytheoverhearingcostofthecorrespond-ingtransmission.Weobservethatindensesensornetworks,overhearingcostscanconstituteasignificantfractionofthetotalenergycostandthatcomputingthedirectedminimumspanningarborescenceontheaugmentedcostmetricresultsinenergysavings.Weobserveasimilarphenomenonforthedissemination(alsoknownasbroadcasting)scenario.
Therestofthepaperisorganizedasfollows:Section2in-troducestheenergymodelswellknowninliterature;Section3introducestheproblemofoverhearingtransmissions;Sec-tion4describesoptimalalgorithmsforcomputingrootedar-borescencesaswellasnear-optimalheuristicsforcomputingbroadcasttreesusingtheoverhearingcostmetric;Section5presentssimulationresultsofthedescribedalgorithms;Sec-tion5concludesthepaper.
propagationchannelandenvironmentalconditions.Etxelecistheenergyexpenditureinthetransmitterelectronics(perbit)andampisaconstantthatischaracteristicoftheam-plifierinthetransmitter.Energyrequiredtoreceiveabitofdataatthereceiverisafunctionofthereceiverelectronicsandisgivenby:
(rcv)
=ErxelecEuv
(2)
Researchersroutinelyusetheaboveenergymodelformod-elingenergycostsofedgesinthenetworkgraph[8].
TheabilitytomodifytransmitpowerinsensorsprovidesapowerfultoolforminimizingenergyandisafeatureofnumerousnewsensorsystemssuchastheARLsensorra-dio[17]).Ifweconsiderarbitrarytransmissionpowercontrolinthismodel,everypairofnodesinthenetworkwillhaveanedgeconnectingthemandthetotalenergycostalongthatedgeduetobothtransmissionandreceptionwillbe:
Euv
(xmit)(rcv)
=Euv+Euv
=Etxelec+Erxelec+ampdαuv
2.PRELIMINARIES
Sensornetworkscanbeclassifiedinto2categories:(1)
query-drivenand(2)event-driven.Forthequery-drivencase,ausersubmitsaqueryfromabasestationnode(BS)whichgetspropagatedthroughthenetworkandsensorsthatcansatisfythequeryrespondtotheoriginatorbymeansofunicastcommunications.Incaseofanevent-drivensystem,eachsensorsendsdatatotheBSwheneveritdetectsacer-tainevent.Thistriggeredmechanismcanbethoughtofasaresponsetoalong-standingqueryaboutthatevent.SincesendingdataalongindividualunicastpathsfrommultiplesensorstotheBSisexpensiveintermsofenergyexpen-diture,researchershaveproposedmechanismstoaggregateupstreamdataasitpropagatesthroughthenetwork[10,20].Essentially,thesenseddataflowsbacktothebasesta-tionalongtheedgesofaspanningtreewhichisconstructedduringthequerydisseminationphase.Suchtreesarere-ferredtoasroutingtreesorgradients.Inthiscontext,theprincipalmechanismofenergyminimizationissuppressionofredundantdatapacketsinthenetwork.
AstaticsensornetworkcanberepresentedbyasetofnodesVwitheachsensornodepossessingageographicalpo-sitionattribute.Thetransmissionenergyrequiredtotrans-mitabitofdatafromnodeutovoverthewirelesschannelisdependentupontheRFpropagationpathlosssufferedoverthedistanceduvbetweenthem;itisgivenby:
(xmit)
=Etxelec+ampdαEuvuv
(3)
Notethattheenergycostsaresymmetricinthismodel,
inotherwords,Euv=Evu.Henceanenergyefficientmech-anismoftransmittingabitofdatafromallsensorstoabasestationnodeistosendandaggregatedataalongtheedgesofaminimumenergy-costspanningtreecalculatedontheentirenetworkgraph.Notethatthenetworkisrepresentedasacompletegraph(clique)undertheassumptionofarbi-trarypowercontrol.Ifthepeaktransmissionpowerisfixedandthetransmitterisallowedtotransmitatdiscretepowerlevelsonly,thentheresultinggraphmaynotbeacliquebuttheedgecostsareeasytoformulate.Oncethecostsareknown,theminimumenergyspanningtreescanbecalcu-latedusingKruskal’sorPrim’salgorithm[4]inO(elogn)time.Forcliques,acomplexityofO(n2)canbeachievedus-ingefficientpriorityqueuedatastructures.Eachleafnodeintheresultingspanningtreetransmitsitsdatasampletoitsparentwhichaggregatesthisdatawithitsownandthatofotherchildrennodesbeforetransmittingtheaggregateinturntoitsparentnode.Thisprocesscontinuesuntilthebasestationreceivesthecompletesetofaggregatesfromitschildren.
α≥2.0(1)
3.ENERGYEXPENDITUREDUETOOVER-HEARINGTRANSMISSIONS
Inthissectionwedemonstratethattheenergymodelpre-sentedinSection2isinadequatefordensesensornetworks.
Here,αisthepathlossexponentandisdependentonthe
57942035794203618
618
Figure2:MinimumEnergyDirectedSpanningTrees(node0isthebasestation):(a)withoutoverhearingcost;(b)withoverhearingcost.Thisnetworkhastheabilitytobefullyconnectedifnodesusetheirmaximumtransmitpower.
Whenacertainnodeutransmitsadatapacketfornodevus-ingoptimaltransmitpower,allnodesxsuchthatdux Euv =E(uvxmit)+E(uvrcv)+E(uv ov) =Etxelec+ampdαuv+Nuv(ov) Erxelec, (4) whereNuv(ov) isthenumberofnodeswithinthecommunicat-ingradiusofuwhenitcommunicateswithv.Thesearethe setofnodeswhichoverhearthetransmissionofthepacketfromutov.)%300( gnira250ehrev200O ot e150ud tso100C ygre50nE ar0txE100150200100250300200500400Number of Sensor Nodes3001000900800700600Dimension of Sq. Area (m)Figure3:ExampleoftheadditionalenergycostduetooverhearingtransmissionsalongtheMini-mumEnergySpanningTree.SimulationparametersincludingenergycostsarethesameasthoseinTa-ble1andnodelocationsweregenerated(uniformly)randomly. ItiseasytoseethatEuv=EvusinceNuv (ov) isnotnec- 2 entailTheperfectsolutionwithoutpointedeachtowardsnodeitshavingparentaindirectionalanoverhearingpenaltywillthespanningantennatree. perfectlyessarilyequaltoNvu(ov) .Thisresultsinadirectednetworkgraphwithasymmetricedgecosts,therefore,regularmini-mumcostspanningtreealgorithmsarenotapplicableinthisscenario.Aminimumcostspanningtreewillhavetobere-placedbyadirectedminimumcostarborescenceRrootedatthebasestationnodesuchthateachnodehasavaliddirectedpathtotherootusingtheedgesofR.Figure1illustratesasimpleexampleinwhichthegreedyPrim’sal-gorithmdoesnotyieldanoptimalrootedarborescence.Thisenergymodelofoverhearingassumesthatasensor’sreceivercircuitryisalwaysawakeandcanreceiveanddecodeallincomingpackets.Theenergycostofacompletepacketreceptionisgreaterthanthecostofremainingidle[14,9,19]3andiscompoundedbytheneedofthereceivertode-codetheentirepacketbeforedeterminingwhetheritistheintendedrecipient.Thiscanindeedbeanissueindensesen-sornetworkswhereapackettransmissioncanbeoverheardbyalargenumberofreceivers.Certainly,ifthereceiverpossessesamechanismofdecodingtheheaderofthepacketaloneandthenshuttingtheradiooffforabriefperiodifitisnotanintendedrecipient,thenadditionalenergysavingscanbeachieved.However,suchfinegrainedschedulingofreceiverelectronicscomesforahighpriceintermsofhard-warecomplexityandmayinducedelaysinprotocolprocess-ingathigherlayers.Weleavethisinvestigationforfutureresearch.Figure2illustratesascenariowheretennodesaresendingdatatowardsthebasestation(node0)andtheyareallcapa-bleofcontrollingtheirtransmissionpower;theintermediatenodesaggregatethedatabeforesendingitupstreamtowardsnode0.Figure2(a)showsthecasewheredataistransmittedalongadirectedMinimumEnergySpanningTreeorMEST.Whennode3forwardsapackettonode6,itstransmissionisoverheardbynodes5,7and9;thisresultsinunnecessaryenergyexpenditureatthelatternodeswhichcannotbepre-ventedaltogether.However,ifdataistransmittedalongadirectedMinimumOverhearingEnergySpanningTreeorMOESTshowninFigure2(b),thisunnecessaryexpendi-tureisminimized.Whilethereare8redundantoverhearingtransmissionsintheformercase,thereareonly5suchtrans-missionsinthelattercase.Theenergysavingsduetofeweroverhearingsinthisparticularnetworktopologyaregreaterthantheextratransmissionenergycost,hencetheMOESThasalowertotalenergyexpenditurethantheMEST. Figure3plotstheextracostofoverhearingifdataisgath-3 hardware. ExactTx:Rx:IdlepowerratiosvarydependingontheradioFigure4:MinimumEnergyDirectedBroadcastTreeswithWirelessMulticastAdvantageusingDifferentEnergyCostModels:(a)Txcostonly;(b)Txpluselectronicscost;(c)Txpluselectronicsplusoverhearingcost.Thetreesaremorebushyin(b)and(c)whenelectronicandreceiveenergycostsareincluded.eredfromaspecifiednumberofsensorstowardsabasesta-tionnodealongtheedgesofaminimumenergyspanningtree.Theadditionalcostisplottedasapercentageofthebaseenergycost.Theenergycostduetotransmissionelec-tronicsisincludedinbothcases.Weobservethattheover-hearingcostcanbeveryhigh(uptoapproximately300%greaterthanthebaseenergycostaccordingtoEquation3ignoringanyidlingenergycosts)indensenetworksforthenetworksizesplottedinthegraph.Hence,algorithmswhichcanminimizethisextracostarenecessary.Weproposesuchalgorithmsinthenextsection. efficientimplementationofEdmond’sbranchingalgorithminmin{O(elogn),O(n2)}timeusingefficientpriorityqueueandsetunion/findprimitives[16]. WeimplementedTarjan’salgorithmandtriviallyadoptedittosolvetheminimumcostcaseinsteadofthemaximumcostcaseaswasdoneinboth[6]and[16].Thiswasdonebyreplacingoriginalcostsbytheirnegativevaluesandthenin-vokingthemaximumbranchingalgorithm.Sinceourgraphisstronglyconnected,itisguaranteedtohaveanarbores-cence(andnotjustabranching)andthentheabovestepworks. Thesalientstepsofthealgorithmtofindthemax-costspanningin-arborescenceareoutlinedbelow.Wefirstre-versethedirectionsoftheedges,computeanout-arborescence(byTarjan’sscheme),andthenreversetheedgedirectionsagain. 1:ConstructcompletegraphG–theedgecostbetweeneverypairofnodesu,visafunctionoftheirpositionsasgivenbyEquation4.InitializesubgraphG(H)←(V,φ).2:Reversethedirectionsofalledgesandreplacethecostsbytheirnegativevalues.Removeallincomingedgesintorootnoder. 3:ChoosearootcomponentSinsubgraphG(H)4. 4:Selectthemax-weightedgee=(u,v)∈V×VincomingintoS.Ifu∈Sdiscardedgeeandgotostep3;otherwisegotostep5. 5:IfuandvdonotbelongtothesameweaklyconnectedcomponentofG(H),add(u,v)toHandgotostep3;otherwisegotostep6. 6:Findthesequence{Si,(xi,yi),...}ki=1ofstronglycon-nectedcomponentsSiandedges(xi,yi)∈H;yi∈Si,xi∈Si+1,Sk=S,(xk,yk)=(u,v),xk∈S1.Findmin-costedge(xj,yj)among(xi,yi). 7:Redefinethecostofunexaminededgesoftheform(x,y),y∈Siasfollows: c(x,y):=c(x,y)−c(xi,yi)+c(xj,yj) 8:Add(u,v)toHthuscombiningSi’stoonestronglycon-nectedcomponent.IfallnodesinGhavebeenselected,IfSissuchthatnoedge(u1,u2)∈Hsatisfiesu2∈Sandu1∈V\\S,thenSisarootcomponentofG(H). 4 4. ENERGY-EFFICIENTDATAGATHERINGANDDISSEMINATIONALGORITHMS 4.1DataGatheringProblem Asmentionedintheprevioussection,theenergy-efficientdatagatheringproblemcanbeoptimallysolvedbycom-putingtheminimumcostarborescencerootedatthebasestationnode.Theproblemcanbeposedformallyasfollows–findarborescenceRthatsatisfiesthefollowing:• (u,v)∈R Euvisminimum;EuvisgivenbyEquation4. •R=(V,E)isadirectedsubgraphofG=(V,V×V)withoutself-loopsandpossesses|V|−1edges.•Rhasexactlyonerootnoder(outdegree(r)=0)anditisconnected,i.e.,thereisexactlyonedirectedpathfromeachnodew∈V−{r}tor.•∀w∈V−{r}:outdegree(w)=1. Thelasttwoconditionsimposeadditionalconstraintsonthecomputationofthedirectedspanningtreethatmaketheproblemdifferentfromtheregularminimumcostspanningtreeproblem.Edmondsproposedanefficientalgorithmforfindingoptimumbranching(rootedforests)withmaximumcostonarbitrarydirectedgraphs[6].Hepointedoutthatoptimalarborescences(rootedtrees)canbecomputedwithveryminormodificationstothebranchingsalgorithmifthedirectedgraphisstronglyconnected.Tarjanproposedan gotostep9;otherwise,gotostep3. 9:FindtheshortestpathtreeTonHrootedatr. 10:ReversethedirectionsofedgesinTandrestoretheorigi-nalpositivecosts;Ristheresultantminimumcostgath-eringarborescence. Weimplementedtheabovealgorithmusingefficientdatastructuressuchaspriorityqueuesassuggestedin[16];since therearenedgesinG,thetimecomplexityisO(n2).Wesimulated2 theabovealgorithmforsensornetworksofvarioussizesatdifferentnodedensities;bothMESTandMOESTweresimulatedandtheresultsofcomparisonhavebeenpresentedinSection5. 4.2DataDisseminationProblem Energy-efficientdatadisseminationinwirelessnetworkshasbeenahottopicofinterestintheresearchcommunityrecently[18,1].Theobjectiveistodevelopalgorithmsthatconsumetheminimumamountofenergyforbroadcastingabitofdatatoallnodesinthenetwork.Thebroadcasting(ordissemination)probleminwirelessnetworksisdifferentfromitspoint-to-pointwiredcounterpartbecausethewire-lesschannelhasinherentbroadcastcapability;henceanodecansendapackettoallitsneighborswithjustonebroad-cast.Wieselthieretal.coinedtheterm“wirelessmulti-castadvantage”(WMA)forthisphenomenon.In[18]theydevelopedenergy-efficientbroadcastingprotocolswhichex-ploittheWMA. Cagaljetal.showedthatthewirelessbroadcast(ordis-semination)problemisNP-completeanddevelopedapprox-imationalgorithmsaswellasaheuristiccalledEWMA(Em-beddedWMA)[1]whosesalientstepsareoutlinedbelow:1:Constructafeasiblesolutionforbroadcast.e.g.,westartwithaMinimumEnergySpanningtreeasaninitialbroadcasttree. 2:Exchangesomeedgesofthistreewithnewedgesinor-dertosystematicallyreducethetotalenergycost.Thisreductionisreferredtoasgain.Attheexpenseofin-creaseinacertainnodev’stransmissionenergy,signif-icantgaincanbeachievedbyexcludingseveralnodesfromthebroadcasttree.Inthisstep,onehastoensurethatthenodevshouldbeabletoreachnodeswhichwerepreviouslyreachableonlythroughasubsetoftheexcludednodesinthebroadcasttree. 3:Iteratethepreviousstepuntilnonodescanbeexcludedfromthebroadcasttreeandallnodesinthenetworkarecovered. Inthissectionweinvestigatehowoverhearingenergycostmodelsaffectthetotalenergysavings.Figure4illustratestheeffectofusingdifferentenergycostmodelsonthestruc-tureofthebroadcasttreegeneratedbyEWMA.Thein-clusionofthetransmissionelectronicscost(Etxelec)causesEWMAtoreducethenumberoftransmittingnodessincealargenumberoftransmissionsisdeemedexpensiveinthismodel.Thisresultsinsomenodeshavingtoincreasetheirtransmissionpowerandcovertheexcludednodes,andhencegivingthetreeabushyappearance. Whentheoverhearingcostisincludedintheenergymodel,weobservethatthetreeisbushierneartherootnodebutlesssoatforwardingnodesatlowerlevels.Thereasonbe-hindthisisintuitivelyclear:havinganumberoflowdegreeforwardingnodesatlowerlevelsofthetreeresultsinlesserexpenditureofenergyduetooverhearingthanifthefor-wardingnodesatalllevelshavesimilardegree(whichisthe TableParameter1:SimulationValue Parameters Ptxelec50mWPrxelec50mW B(datarate)1Mbps EtxelecPtxelec =50nJ/bitErxelecPrxelec B =50P(Rxsensitivity)−72B nJ/bitrxthreshdBm h(antennaheight)1.5mν(frequencyband)916MHzλ(RFwavelength)c/ν eamp(α=2)16π2Prxthresh J/bit/e(α=4)Bλ2 m2 ampPrxthresh BhJ/bit/m4 dxover(crossover)4πh 24λ≈86mcaseforFigure4(b)).Thisnon-uniformdegreestructurefor caseinFigure4(c)minimizestheredundancyofoverhear-ingatothernodes.WeshowbysimulationsinSection5thatthetotalenergycostcanbeminimizedbyincorporat-ingoverhearingcostintotheenergymodel. 4.3Discussion Sinceidlelisteningonawirelesschannelisasignificantsourceofenergyconsumption,researchershaveproposedamultitudeofschemesformitigatingthisproblem.Pream-blesampling[5],PAMAS[14]andwake-on-wireless[13]arerepresentativeofsuchschemes.Inthefirstscheme,asen-sornodegoesinto5fine-grainedperiodsofsleepandwakesupperiodicallytosamplethechannel,anditkeepsawakeifitseesapreambletransmittedbythesender.There-ceivermaystillincurtheoverhearingenergycostsinceithastodecodetheentirepacketbeforeascertainingwhetheritindeedisanintendedrecipientofthetransmission.BothPAMASandwake-on-wirelessschemesadvocatethesepara-tionofsignalinganddatachannelstoachievegreaterpowerefficiency. Inwake-on-wireless,alow-powerradiothatconsumesonly2mWofpowerlistenstoincomingtransmissionsandwakesupthemainradiowhenitdetectsavalidincomingpacket.Althoughthistechniquemitigatestheoverhearingcostinpoint-to-pointtransmissions(asinthedatagatheringcase),itmaynotbeabletodosointhenetwork-widedatadissemi-nationscenario6Arguably,moresophisticatedprotocolscanbedevelopedthatcansaveenergyinthissituation,butweleavethatforfutureinvestigation. Whileminimizingtotalenergyisalwaysadesirablegoalinthedatadisseminationapplication,thechoiceofthebroad-casttransmissionstrategyshouldbemadeonlyafterevalu-atingallthetrade-offsappropriately.Forexample,ifrelia-bilityinbroadcastismoredesirablethantotalenergysav-ings,asparsetreecanbemoresuitablethanabushyone.Weleavethestudyofsuchtrade-offforfutureresearch.Wenotethatthesealgorithmsrequireknowledgeofthestateofalllinksinthenetwork.Suchalgorithmscanbeimplementedwithoutmodificationinnetworksthatusedis-5 10The6 sinradioeveryis100turneds.onfor30µsinevery300µsinsteadofuponTheredundantthelow-powerarrivalradiowillalwayswakeupthemainradiofromaofdisseminationabroadcastpacketstandpoint. evenifthatpacketisN = 200x 10−5N = 200x 10−51.1EnergyOverhear (J/bit) (J/bit)43.532.560MEST1Energy0.960504030#Clusters20101004007001000504030Dimension#Clusters20101004007001000DimensionFigure5:TotalEnergyvs.DegreeofClusteringandArea:(a)CostofthegatheringtreeMESTwithoutoverhearingcost;(b)CostofoverhearingalongedgesofMEST(Clusterradius=20m)kthenetworkishighlynon-uniformbutaskapproachesN,thenon-uniformityvanishes.Figure5plotsthevariationinthetotalcostofMESTwithareaandclusteringforN=200.Bothbaseandover-hearingcostsareplotted.Weobservethattheincreaseinareaismoregradualforhighkthanforlowvaluesofk(highdegreeofclustering).Atlowk,thedistancebetweenclus-tersincreasesmorerapidlywithincreaseinareaandthepropagationcostalongedgesconnectingtheclustersstartsdominating.Whenthenetworkisverydense(200nodesina0.01km2area),radioelectronicstendtodominatetheenergycostandhencecost(MEST)isunaffectedbyavariationink.Howeverwhentheareaisincreased,thecostofedgescon-nectingthekclusterstendstodominatetheelectronicscost.Itisknownthatthecostoftheminimumspanningtreeofrandomgraphswithpower-weightededges7diminishesasNincreases[15].Hence,askincreasesthesumofcostsofthelongedgesconnectingthekclustersdecreasesandthuscost(MEST)decreasesaswell8.Forsimilarreasonsweob-servethattheoverhearingcostincreaseswithbothareaanddegreeofclustering. InFigure6wecomparethetotalenergyexpenditure(trans-mission,electronicsandoverhearingreception)duetoMESTandMOEST.Representativeresultsfor500×500,600×600,and700×700areashavebeenshown.WeobservethatMOESToutperformsMESTinthismetricinallscenarios.Gainsuptoalmost10%areobserved.Whilethismaynotbeaverylargevalue,itisnotinsignificantforlowpowersensornetworkswhichneedtooperateaslongaspossible.ForallN,theabsolutegains(notrelativegains)ofMOESToverMESTaremaximumforlowkanddiminishgraduallyaskincreases.Thisisbecausethereisagreaterdegreeofoverhearingforhighlyclusterednetworksandhenceitpaystoconsiderthatintothecostmodel. FromFigure7weobservethatthesourcetosinkpathlengthsarenotaffectedmuchbyincorporatingoverhear-ingcostinthecostmodel.Infact,onseveraloccasions(lowk),MOESTgivesshorteraveragepathlengthsthanMEST.Thismeansthattheaggregatedpacketswillnotsuf-Thisreferstothecasewheretheedgecostisoftheformofrβwhereristheeuclideanlengthoftheedgeandβisaquantitygreaterthan1.8 Thisisbecausethecostofedgesconnectingthekclustersdominatesthetotalcost. 7 Table2:OverhearingEnergyCostsforDataGath-eringinRandomTopologies(nodesuniformlydis-tributedina0.25km2area;costinJ/bit)NCost(MEST)Cost(MOEST)%Gain500.66288×10−50.64324×10−52.96−5−51001.34579×101.29657×103.66−5−52002.71298×102.61901×103.46−5−53004.07797×103.92669×103.71−5−54005.4402×105.24448×103.60tributeddatabasesoftopologyinformationsuchaslinkstatestyleprotocols[3,11],orcanbeimplementedwithmod-ificationandsomelossofperformanceinprotocolswhichdistributemorelimitedsetsofnetworkinformationsuchasHSLS[12]. 5.SIMULATIONRESULTS Wesimulatedtheoptimalminimumenergyspanningtreealgorithmfortwodimensionalsensornetworks.TheradioparametersusedforsimulationhavebeenlistedinTable1(mostparametershavebeentakenfrom[8]). 5.1DataGatheringResults First,wepresentsimulationresultsforthedatagather-ingproblem.WesimulatedTarjan’salgorithmforenergymodelsbothwithandwithoutoverhearingcost.Webeganourinvestigationwithrandomly(2Duniformdistribution)distributedtopologies.Table2presentsasnapshotoftheresults.Thecostspresentedthereincorrespondtothetotalenergyexpenditure(transmission,electronicsandoverhear-ingreception)forMESTandMOESTstyletreeconstruc-tion.Whiletheformermethodignorestheoverhearingcostduringtreecalculation,thelatterfactorsthatin.Weob-servethatthegainsaremodest(lessthan4%)intheuni-formdensitycaseforseveralvaluesofN.Hencewedecidedtoinvestigatewhetherthegainsarehigherfornon-uniformnetworktopologies. Wesimulatednon-uniformtopologiesinthefollowingman-ner:firstkpointsaregeneratedwithcoordinatesdrawnfromauniformdistribution;thesepointscorrespondtothekclustersinthenetworkandanumberofpoints(totalofN)arerandomlygeneratedwithinacertainradiusoftheseclustercenters(20m,inoursimulations).Forlowvaluesof 2Total Energy (J/bit)1.8x 10−5N=1004x 10−5N=20065.5x 10−5N=300MEST: X=500mMOEST: X=500mMEST: X=600mMOEST: X=600mMEST: X=700mMOEST: X=700m3.51.61.4354.5102030405060Number of clusters102030405060Number of clusters102030405060Number of clustersFigure6:SimulationResultsforClusteredTopologies:TotalEnergyConsumptionvs.NumberofClusters:Linesexistinpairsforeachareaandtheycorrespondtothemanneroftreeconstructionfordatagathering.TheY-axishowever,representsthetotalenergyconsumedintheoverhearingenergycostmodelforeachofthesetrees.fergreaterdelaysifonedecidestoincludeoverhearingcostintotheenergyequation.4540N = 3003530N = 200MEST: X=500mMOEST: X=500mMEST: X=600mMOEST: X=600mMEST: X=700mMOEST: X=700m2520N = 1001510102030405060Number of clustersFigure7:SimulationResultsforClusteredTopolo-gies:AverageHopCountsforMinimumEnergySpanningTrees.Theaveragesourcetosinkpathlengthsarenotaffectedmuchbythecostmodel. 5.2DataDisseminationResults Herewepresentthesimulationresultsfortheenergy-efficientdatabroadcastalgorithmduetoCagaljetal.[1]asmentionedinSection4.2.Arandom(uniform)distributionofnodeswasassumedinbothdenseandsparsetopologies.InFigure8wesimulateandplotthetotalenergyconsumedtobroadcastabitofdatafor3differentenergycostmodelsforN=100,200,300.Weobservethatgraphsforallthesecostmodelsarewavyingeneralshape,i.e.theyhaveregimesofsharpincreasefollowedbygentleincreaseandthensharpincreaseagain.Forthedensestnetworks(dimensionaround100m)theelectronicscostdominatestheenergyequationandthedepthofthebroadcasttreeis1forenergymodels 2and3;hencethecurvesaremostlyflat.Asthenetworkgetsslightlysparser(dimensionbetween500mand1000m,thedepthoftheEWMAincreasestoafewhopsandthatresultsinasharpincreaseinenergycostsofmodels2and3.Thisistheregimewhereoverhearingstartstobecomeamajorfactor.Asthenetworkbecomessparser(dimensionbetween1000mand3000m),electronicsandoverhearingcostsarecompara-bletothepropagationenergycostsandthetreesarelessbushier.Henceaslightincreaseinareadoesnotresultinasignificantincreaseinenergy.Howeverthereisasharpin-creaseincostsasthenetworkbecomesverysparse(3000m-5000m)becausethepropagationcostisthedominantfactorinthatregime,nottheelectronicsoroverhearingcost.Thebroadcasttreesarenotatallbushyforsuchsparsenetworks.Thegainsofusingelectronicsandoverhearingcostmod-elsaremaximumfordensenetworksandtheseincreaseinabsolutevalueasNisincreased.Thisisbecausefordensenetworks,allnodescanbe“covered”withonlyafewbroad-casts.SeeFigure10showshowthenumberofforwardingnodesincreaseswiththeareaineachcase.ThegainsofusingtheoverhearingcostmodelovertheothertwomodelswhichdonotcapturethatcostcanbeseeninFigures8and9.Thehighestpercentagegainscanbeob-servedaroundthe1km2region.Weseethatincorporatingoverhearingaswellaselectronicscostintotheenergyequa-tioncansaveasmuchas45%energyinthoseregimes.Wealsoobservethatenergymodel3(overhearingcost)yieldsgainsofover10%aboveenergymodel2indensenetworks(N=300;dimensionaround1000m). Theseenergygainscomeinattheexpenseofothermet-rics.Thetreesarelikelytobeverybushyandthuslessreliableandtheburdenofforwardingthepacketissharedbyonlyasmallfractionofthenodes(seeFigure10).Itisthedutyofthesystemdesignertoanalyzetherequirementsofthetaskandbalancethesetrade-offs. Mean #hops (src−>sink)Acknowledgments ThispaperwaspreparedthroughcollaborativeparticipationintheCommunicationsandNetworksConsortiumspon-soredbytheU.S.ArmyResearchLaboratoryundertheCol- 65 (J/bit)x 10−5N=1005Ebroadcast (J/bit)432x 10−5N=2005 (J/bit)432x 10−5N=3004321010010003000Dimension (m)broadcastE5000110010003000Dimension (m)EbroadcastTx cost onlyTx+Elec costTx+Elec+Overhear5000110010003000Dimension (m)5000Figure8:EffectofOverhearingTransmissiononDisseminationAlgorithms:Eachofthe3linesineverysubplotrepresentstheparticularmannerofconstructionofthebroadcasttreealthoughtheY-axisrepresentsthetotalenergyconsumedintheoverhearingenergycostmodelalone.WecanobservethatthegainsofusingtheoverhearingenergycostmodelfortreeconstructionimproveasNincreases.ForeachNthegainsoverthe“transmissioncostonly”modelaremaximumforthedensestscenarios.Overhearing model vs. Tx only model5040% energy gain3020100N=100N=200N=300% energy gain121086420100020003000Dimension (m)4000500000Overhearing model vs. Tx+Elec modelN=100N=200N=300100020003000Dimension (m)40005000Figure9:EnergyGainduetouseoftheOverhearingCostModel:(a)Gainsovertransmissioncostmodel;(b)GainsovertransmissionandelectronicscostmodelN=10080#forwarding nodes#forwarding nodes604020010010003000Dimension (m)150N=200250#forwarding nodes20015010050N=300100Tx cost onlyTx+Elec costTx+Elec+Overhear505000010010003000Dimension (m)5000010010003000Dimension (m)5000Figure10:NumberofNodesForwardingPacketsintheBroadcastTree:Muchlessernumberofnodesparticipateinforwardingbroadcastpacketsifelectronicsand/oroverhearingcostisincludedinthemodel.Thereareafewmoreforwardingnodesintheoverhearingcostmodelthanintheelectronicscostmodel.laborativeTechnologyAllianceProgram,CooperativeAgree-mentDAAD19-01-2-0011.TheU.S.Governmentisautho-rizedtoreproduceanddistributereprintsforGovernmentpurposesnotwithstandinganycopyrightnotationthereon.WealsothankMarioCagaljforprovidingthesourcecodefortheEWMAheuristic. 6.CONCLUSIONSANDFUTUREWORK Inthispaperweshowedthatindensesensornetworks,packetoverhearingatreceiversbeasignificantadditionalen-ergyexpenditureduringdatagatheringanddissemination.Wearguedthatoverhearingcostshouldbeincorporatedintotheenergyequationwhilecalculatingthebestdatagather-ingandbroadcasttrees.WealsoshowedthattraditionalminimumenergyspanningtreesareinadequateduetotheasymmetricnatureoftheoverhearingcostandwedescribedbrieflyhowTarjan’sminimumbranching/arborescencealgo-rithmcanbeutilizedtodothejob.Wedemonstratedbysimulationsthatincorporatingoverhearingcostintotheen-ergymodelcanresultincloseto10%energysavingsinbothdatagatheringandbroadcastscenarios. Infuture,weplantoinvestigatetheimpactofoverhear-ingondatadisseminationandgatheringapplicationsundermorecomplexanddetailedenergymodelsandchannelac-cessschemes,especiallytheonesinvolvingintelligentcyclingoflow-powersensorradiostosaveenergy. 7.REFERENCES [1]M.Cagalj,J.-P.Hubaux,andC.Enz. “Energy-efficientBroadcastinginAll-wireless Networks”.ACM/KluwerJournalofMobileNetworksandApplications(MONET).Toappear.[2]I.Chlamtac,C.Petrioli,andJ.Redi. “Energy-conservingAccessProtocolsforIdentificationNetworks”.IEEETransactionsonNetworking,7(1):51–59,February1999. [3]T.ClausenandP.Jacquet.OptimizedLinkState RoutingProtocol(OLSR).RFC3626(Experimental),October2003. http://www.ietf.org/rfc/rfc3626.txt. [4]T.H.Cormen,C.E.Leiserson,andR.L.Rivest. IntroductiontoAlgorithms.MITPressandMcGraw-Hill,1990. [5]D.Culler,J.Hill,P.Buonadonna,R.Szewczyk,and A.Woo.ANetwork-CentricApproachtoEmbeddedSoftwareforTinyDevices.TechnicalReportIRB-TR-01-001,Intel-Research,Berkeley,CA,January2001. [6]J.Edmonds.“OptimumBranchings”.Journalof ResearchofTheNationalBureauofStandards,71B:233–240,1967. [7]D.Estrin,R.Govindan,J.Heidemann,andS.Kumar. “NextCenturyChallenges:ScalableCoordinationinSensorNetworks”.InProc.InternationalConferenceonMobileComputingandNetworking(MobiCom),Seattle,WA,August1999. [8]W.Heinzelman,A.Chandrakasan,and H.Balakrishnan.“Energy-EfficientCommunicationProtocolsforWirelessMicrosensorNetworks”.InHawaaianInternationalConferenceonSystemsScience(HICSS),Hawaii,January2000. [9]O.Kasten.Energyconsumption.URL. http://www.inf.ethz.ch/~kasten/research/bathtub/energy_consumption.html%. [10]S.Madden,M.J.Franklin,J.M.Hellerstein,and W.Hong.“TAG:aTinyAGgregationServiceforAd-HocSensorNetworks”.InProc.SymposiumonOperatingSystemsDesignandImplementation(OSDI),December2002. [11]R.Ogier,F.Templin,andM.Lewis.Topology DisseminationBasedonReverse-PathForwarding(TBRPF).RFC3684(Experimental),February2004.http://www.ietf.org/rfc/rfc3684.txt. [12]C.Santivanez,S.Ramanathan,andI.Stavrakakis. “MakingLinkStateRoutingScaleforAdHoc Networks”.InProc.ACMMobiHoc,LongBeach,CA,October2001. [13]E.Shih,PBahl,andM.J.Sinclair.WakeonWireless: AnEventDrivenEnergySavingStrategyforBatteryOperatedDevices.InProc.InternationalConferenceonMobileComputingandNetworking(MobiCom),Atlanta,GA,September2002. [14]S.SinghandC.S.Raghavendra.PAMAS–Power awaremulti-accessprotocolwithsignallingforadhocnetworks.ACMSIGCOMMComputer CommunicationReview,28(3):5–26,July1998.[15]J.M.Steele.“GrowthRatesofEuclideanMinimal SpanningTreeswithPowerWeightedEdges”.TheAnnalsofProbability,16(4):1767–1787,1988. [16]R.Tarjan.“FindingOptimalBranchings”.Networks, 7(1):25–35,Spring1977. [17]R.Tobin.“USArmy’sBLUERadio”.InProc.SPIE, UnattendedGroundSensorTechnologiesand ApplicationsV,volume5090,Orlando,Florida,April2003. [18]J.E.Wieselthier,G.D.Nguyen,andA.Ephremides. “OntheConstructionofEnergy-effcientBroadcastandMulticastTreesinWirelessNetworks”.InProc.IEEEINFOCOM,pages585–594,TelAviv,Israel,March2000. [19]W.Ye,J.Heidemann,andD.Estrin.“An Energy-EfficientMACProtocolforWirelessSensorNetworks”.InProc.IEEEInfocom,NewYork,June2002. [20]J.Zhao,R.Govindan,andD.Estrin.“Computing AggregatesforMonitoringWirelessSensorNetworks”.InProc.IEEEInternationalWorkshoponSensorNetworkProtocolsandApplications,Anchorage,AK,May2003. 因篇幅问题不能全部显示,请点此查看更多更全内容