您的当前位置:首页正文

专题六:二次函数最值问题

2021-01-18 来源:星星旅游
12、(2013•绥化)如图,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧. (1)若抛物线过点M(﹣2,﹣2),求实数a的值; (2)在(1)的条件下,解答下列问题; ①求出△BCE的面积; ②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.

5、(2013成都市压轴题)在平面直角坐标系中,已知抛物线y12xbxc(b,c为常2数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3),直角顶点B在第四象限。 (1)如图,若该抛物线过A,B两点,求抛物线的函数表达式; (2)平(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q. i)若点M在直线AC下方,且为平移前(1)中的抛物线上点,当以M,P,Q三点为顶点的三角形是等腰三角形时,求出所有符合条件的M的坐标;

ii)取BC的中点N,连接NP,BQ。试探究

PQ是否存在最大值?若存在,求出

NPBQ该最大值;所不存在,请说明理由。

因篇幅问题不能全部显示,请点此查看更多更全内容