您的当前位置:首页正文

abbr_e4a85a76ad6795a968f416f873e46393

2024-04-18 来源:星星旅游
NanocrystallineTitaniumOxideElectrodesforPhotovoltaicApplications

ChristopheJ.Barbe´,*FrancineArendse,PascalComte,MarieJirousek,FrankLenzmann,

ValeryShklover,andMichaelGra¨tzel

InstituteofPhysicalChemistry,SwissFederalInstituteofTechnology,Lausanne,Switzerland

Duringratorytrochemicalathenewpastfiveyears,wehavedevelopedinourlabo-aprocess.typeofsolarThelightcellthatisbasedonaphotoelec-adsorbedmonolayerofdye(i.e.,aRutheniumabsorptioncomplex)isperformedthatby

istitaniumhasoxidechemically(TiOatthesurfaceofasemiconductor(i.e.,2)).WhenThetheabilitytotransferanelectronexcitedtobyaphoton,thedyetionelectricfromoffieldthatisinsidethematerialthesemiconductor.allowsextrac-Athethedyeelectron,toaredoxandmediatorthepositivethatchargeispresentistransferredinsolution.byrespectablephotovoltaicefficiency(i.e.,10%)isobtainedparticles.theusetureWeofmesoporous,willshowhownanostructuredthefilmsofanatasespecifically,influencesthephotovoltaicTiOresponse2electrodeofthemicrostruc-cell.Moresuchmalasprecursorwewillchemistry,focusonhowtemperatureprocessingforparametershydrother-fluencegrowth,tering,thefilmbinderporosity,addition,pore-sizeandsinteringdistribution,conditionslightin-solar-cellandefficiency.

electronpercolationandconsequentlyaffectscat-theI.

Introduction

R

ECENTLY,

nanocrystallinebecausecreasingTheseofamountofattentionmaterialsinthehavescientificattractedcommunityanin-(i.e.,unusualtheirpropertiesspectacularresultphysicalfromandthechemicalultrafineproperties.structureclassifiedagrainbulkinsizeof<50nm)ofthesematerialsandcanbecisely,andmenttheirpropertiestwocategories:smallcrystallitethatarerelativepropertiesthatarerelativetothesizecantoleadthetosurface.quantumMorepre-CdS),effectsbeenmagneticinsemiconductors1materialswith(siliconorcadmiumconfine-sulfide,refrigeration,usedformonodomaingrainsthathave2high-densityties.1,3orinformationstorageandmagneticgrain-boundary-to-volumeAnothercharacteristicmaterialswithofthesestrongmaterialspiezoelectricistheirproper-ofsynthesisductile4orsuperplasticratio,ceramicswhich5andenablesthefabricationhighmembranesof6ultradenseandmaterialsorcoatingstheandlow-temperaturehighlyporoustheinnanocrystallineusingthisveryelectrodes.7Byhighsurfacearea,whichisprovidedbyphotoelectrochemicalourlaboratoryaparticles,newprocess.typeweofhave8,9solarsuccessfullycellthatisbaseddevelopedonasolardifferentiated.cells,thelight-absorptionIncontrasttoconventionallayerThelightabsorptionandcharge-separationisperformedbystepsaarechemicallyofdyeoxide(TiOat(i.e.,thesurfaceaRutheniumofasemiconductorcomplex)thatisadsorbedmono-(excitation),(i.e.,titanium2)).Viaabsorptionofaphotonthedye

C.J.Brinker—contributingeditor

ManuscriptNo.191723.ReceivedJunegewandteSupportedbytheSwissNationalScience24,1996;FoundationapprovedandMarchtheInstitut31,1997.fu¨rAn-*Member,PhotovoltaikAmerican(Gelsenkirschen,CeramicSociety.

Germany).changesstatetiondizedband(S*).fromofThen,thethesemiconductoritelectronicinjectsangroundexcitedstate(S0)totheexcited(TiOelectronintotheconduc-2)and,thus,bandreductionand(S+).theTherecombinationoftheelectroninthebecomesconductionoxi-thatfromholetheonS+thestateoxidizeddyeismuchslowerthanthetheisinsolution.Thus,chargebytheseparationreducedstateisofefficient.themediatormaximumoxidizedredoxvoltagemediatorcorrespondsisreducedtoatthetheNext,differencecounterelectrode.Thesemiconductor.potentialrespectableTheofthesimplicitymediatoroftheandcellthedesign,Fermibetweenaslevelwelloftheastheitscostreductionefficiencyof(i.e.,10%–11%),promisesasignificantuseThiscastingofporousrespectablesolarnanostructuredphotovoltaicenergy.

filmsefficiencythatisobtainedviathewillthus,describenanocrystallinehowtheanataseTiOparticles.areInsynthesizedthefollowing,bytapewephotovoltaiccolloidalvestigateresponsesynthesisofand2thecell.filmelectrodemicrostructure—and,Moreprocessing—influencesthearea,conductor.thedyetherelationshipsadsorption,betweentheparticleprecisely,size,wethewillsurfacein-tributionWealsowillshowandthehowelectrontheinitialinjectionparticle-sizeinthesemi-which,therefore,inturn,influencesaffectsthetheelectrolytepore-sizedistributiontransportphenomenainthefilm,dis-efficiency.

theinternalresistanceofthecell,aswellasitsglobaland,II.

ExperimentalProcedure

(1)ColloidalSynthesis

asTypical(97%,follows.synthesisAquantityoftheTiO2nanoparticlescanbedescribedwisesolutionandAldrichChemical(125Co.,Milwaukee,mL)oftitaniumWI)isisopropoxideadded,drop-stantaneously.underatroomvigoroustemperature,stirring.toA750mLofa0.1Mnitricacidheatedtizationto80°CImmediatelyandstirredvigorouslyafterthewhitehydrolysis,precipitatefor8h,toachievetheformsslurryin-pep-isinto(i.e.,destructionoftheagglomeratesandredispersionfritfiltratetoprimaryremoveparticles).nonpeptizedTheagglomerates.solutionisthenWaterfilteredonaglassunderThegrowthtoadjustthefinalsolidsconcentrationtois∼added5wt%.totheheatedhydrothermaloftheseconditionsparticles,inupatotitanium10–25autoclavenm,isachievedthattemperaturefor12tationishdependentinthetemperatureisontherangeof200°–250°C;thedispersedoccurspulses).troducedAfterusingduringtheautoclaving,desiredandparticletheparticlessize.Sedimen-arere-twoatitaniumsonications,ultrasonicthecolloidalhorn(400suspensionW,15×2s(3MPa))intoaarotaryevaporatorandevaporated(35°C,30ismbarin-theSeveralvariationsfinalTiOof2thisconcentrationsynthesiswereof11designed,wt%.

tostudypH,influenceofprocessingparameters,suchasprecipitationonhydrolysisrate,autoclavingpH,andprecursorchemistry,ofthealkoxidepHmorphologyandthehydrolysisofthefinalrateparticles.duringTostudytheinfluenceshotbasicto(0.1dropwise)wasaddedMammonia)tousinganwateracidicdifferentspeedsprecipitation,(varyingfromtitaniumonesolution.(0.1MnitricTostudyacid),theneutral,influenceandof

pHautoclavedduringhydrothermalgrowth,precipitateswerepeptizedandments:13precursorinaatatatemperatureof250°Cindifferentenviron-triethylaminepH1innitricsolution.acid,atpHThe11inammonia,andatpHideCorp.,ortitaniumchemistrybutoxidewasstudied(bothpurchasedbysubstitutinginfluenceofthetitaniumfromtitaniumethox-reactingRonkonkoma,inthetitaniumalkoxideNY)fortitaniumwithaceticisopropoxideFlukaacidoracetylorChemicalbypre-prioramoisture-freetohydrolysis.environment10(i.e.,anargon-gasgloveacetonebox)(2)TiO2ElectrodePreparation

techniqueTheTiO2pasteisdepositedusingasimpledoctor-bladethatonsheetglass(NipponSheetGlass,Hyogo,Japan)(SnOhasbeencoatedwithafluorine-dopedstannicoxidegreen2)layer(sheetresistanceof8–10⍀/ᮀtemperaturelayeris∼100␮mthick.Thelayerisdried).Theinairresultingatroomofof∼50°Cforfor1510min.min,Then,followedthefilmbyistreatmentatatemperatureto20°–50°C/minroomtemperature.

andleftat450°Cforheated30minto450°CbeforeatcoolingaratetheTopolyethylenesynthesispreventofcrackingsinteredduringfilmsfilmthatdrying,are10which␮mthusrendersMerck,50%Darmstadt,glycolGermany)(PEG,molecularisaddedweightinaproportion(MW)thickofpossible,of20000,0%–screw-threadedoftheTiO2weight.TheresultingpasteisstoredinaThisAnglassbottleuntildeposition.

ofstepadditionalconsistsstepofimpregnatingcanbeperformedtheTiOonthefiredelectrode.2filmwithawatertitanium450°C(concentrationtetrachloridefor30min.

of0.1(TiClsolutionM),4which)thathasisfollowedbeendissolvedbyafiringiniceat(3)ColloidsandElectrodesCharacterization

relationTheparticle-sizedistributionwashavennmInstruments,spectroscopyAustin,(ModelTX)BI2030ATstudiedthatwasequippedinstrumentusingphotoncor-with(Brook-aHoriba,laser)determinedTokyo,andcentrifugalJapan).†Thesedimentationsurfacearea(ModelofthecolloidsCapa700,488wasGeminiZeta(Modelpotential2327,usingMicromereticsanitrogenadsorptionapparatus(ModelstudiesondifferentInstrumentCorp.,Norcross,GA).ditionalZetasizer,MalvernInstruments,suspensionsMalvern,wereU.K.).performedAd-croscopycharacterizationmicroscope(TEM),whichwasincludedtransmissionelectronmi-Eindhoven,(ModelCM30ST,performedPhilipsResearchusingahigh-resolution(XRD),(Scintag,whichThewasNetherlands),andX-raydiffractometryLaboratories,resolutionTheelectrodeSantaClara,performedmicrostructureCA)usingusingCuapowderdiffractometerwasK␣studiedradiation.

usingmicroscopescanningelectronmicroscopy(SEM)field-emissionahigh-trodeadsorption–desorptionpore-size(ModeldistributionS-900,Hitachi,Tokyo,Japan).Theelec-mereticsapparatuswas(ModelstudiedASAPusing2010,anitrogenflectionsInstrumentCorp.).TheopticaltransmissionsandMicro-re-rangespectrometerof300–800oftheTiOnm2onfilmsanultraviolet–visiblewererecordedinlightthewavelength(UV–VIS)anintegrating(Varian,sphere.PaloAlto,CA)thatwasequippedwith(4)Solar-CellAssembly

inTheTiO2nanocrystallineelectrodedicarboxilate)asolutionofrutheniumdye(rutheniumwasimmersed(2,2Јbipyridyl-4,4overnightЈ-trationacetonitrileof3×2(NCS)10−4M2).thatThewaselectrodedissolvedwasinethanol)thenrinsed(concen-withsolutionpenetratedwasanddepositeddried.Oneontodroptheofsurfaceaniodine-basedoftheelectrodeelectrolyteandtrolytemethylsolutioninsidewasthecomposedTiO2filmofvia0.5capillarymmol/Laction.ofhomemadeTheelec-mmol/Lhexylpyridineofthatlithiumimidazolium,11wasdissolvediodide(LiI),20inacetonitrileandmmol/L500mmol/Lofiodine(Idi-2),40(alltheofchemicals

tert-butyl†Notcorrectedforlightscattering.

wereelectrodepurchasedelectrodewastoformthenfromourclippedFlukatestcell.

ontoChemical).thetopAofplatinizedtheTiOcounter2working(5)PhotovoltaicCharacterizations

terizedThephotovoltaicpropertiesofthesolarsistedsolarofusingrecordingtwodifferentthecurrent–voltagetechniques.Thecellswerecharac-characteristicsfirsttechniquecon-1Sun),cellwhichinthecorrespondeddarkandundertoaansolarilluminationelevationofofAM42°1.5oftheto(orthe

TableI.SurfaceAreaandAverageParticleSizeofSamplesAutoclavedatDifferentTemperatures

Powder

Surfacearea(m2/g)

dBET†(nm)

AutoclavedAutoclavedat200°C145Autoclavedat210°C13010.8Autoclavedatat230°C250°C11512.013.6P25(Degussa)1085514.528.4

†ticlesAveragearespherical.

diameterback-calculatedfromthesurfacearea,assumingthatthepar-horizon.Anadditionalmeasurementwasperformedatalowerlightintensity(1/10Sun)toexaminethepotentialnonlinearityinthecellresponse.Atypicalcurrent–voltagecurveisshowninFig.1.Thiscurvecanbedescribedusingthefollowingsetofparameters:theshort-circuitcurrent(ISC),inunitsofmA/cm2),theopencircuitvoltage(V0C,inunitsofmV/cm2),theefficiencypercentage(␩),andthefillfactorpercentage(FF).ISCisthecurrentthatisrecordedwhenthevoltageiszero,andV0Cisthepotentialwhenthecurrentiszero.Soasnottooverwhelmthereaderwithcurrent–voltagecurves,theperfor-mancesofthecellswillbediscussedusingthepreviouslydescribedsetofparameters.Theefficiencyisgivenbytheratiooftheelectricalpowerthatisdeliveredbythecelldividedbythepowerofthelightthatisilluminatingthecell.

Thesecondtypeofphotovoltaictestthathasbeenperformedonthesolarcelliscalledincidentphotonconversionefficiency(IPCE).Itrepresentsthepercentageofincidentphotonsthatare

convertedtoelectronsatacertainwavelengthandisdefinedbytheformula

ISCIPCE͑␭͒=1240(1)

␭⌽where␭isthewavelength(innanometers)and⌽istheinci-dentradiativeflux(inunitsofW/m2).Theexperimentaldetailsthatconcernthetwoexperimentalsetupsthatareusedforthesecharacterizationsaregivenelsewhere.12ͩͪIII.ResultsandDiscussion

(1)InfluenceofProcessingParametersontheFinalFilmMicrostructure

(A)InfluenceofHydrolysispHandRate:Nonoticeabledifference,withrespecttotheBrunauer–Emmett–Teller(BET)surfacearea,isobservedintheprecipitates,regardlessof

whethershot.taniumThistheeffectratiophenomenontitaniumprecursorisaddeddropwiseorinonethatispresentlyisexplainedused,whichbythevery-highwater:ti-appearsAlthoughofhydrolysisrendersthekinetictheprecipitatenegligible.

inanacidiclyzedtobebetterdispersedthanthatwhichenvironmenthasbeenvisuallyhydro-similarinthermalandneutralsizegrowth.wellThisdispersedorbasicsolution,thethreesamplesappearobservationafterpeptizationisconfirmedinacidbyandhydro-withanalysis,hydrothermalBETamedianwhichhasrevealedthepresenceoftheaggregatesparticle-analysisvalueshowsdiameterof0.15␮minthethreesolutions.larthesurfacearea,treatment∼115±atthat2amtemperaturethethreedifferent2/g,of230°C,colloids,haveasimi-afterthatcorrespondingfilmsareidentical.andThus,theSEMitcanmicrographsofhasaneithertheprecipitationpHnorthealkoxidebeadditionconcludedratedevised(B)noticeableRoleoftheinfluencePeptizationontheStep:finalelectrodemicrostructure.tion.todestroyagglomeratesthatformedThepeptizationduringprecipita-stepwasprovidedTheheating,theandbyenergythethethermalthatisneededforthedeagglomerationwasstabilizationenergywasthatensuredwassuppliedelectrostaticallyduringthebyshouldpresenceof0.1Macid.Infact,thepeptizationofthecolloidelectricbepointeasierthemorethepHvaluedeviatesfromtheiso-peptization.Ishows(pHofm2Thesurfacethat6.5–7).13Tablesubstantialareadecreasesgrowthfromalso∼297occursm2/gduringto165particle/gattheendofthepeptization,whichcorrespondstoaThissificationdecreasegrowthfrom5.4nmto9.4nm(inaveragediameter).nanoparticlesphenomenainsurfacetheduringpeptization.thatareaarelinkedalsocouldbeattributedtoden-AlthoughtothecrystallizationtheXRDpatternoftheoftospectrumanataseas-precipitatedpeakof(seethisFig.powderpowder7),theexhibitssomepeaksthatcorrespondshowsdifferentialthepresencethermalofanalysis(DTA)peakat∼350°Cthatcanbeattributedtocrystallization.anexothermic8whichistion.suggestsabsentintheDTAspectrumofthepeptizedsample,ThissignificantlyBecausemightlowerthethatdensitycrystallizationthanofthatamorphousisoccurringofanatase,TiOduringpeptiza-the2isparticleexpectedtobeticle(C)notGrowth:InfluencebeasimportantgrowthTheofAutoclavingasstatedpreviously.

autoclavingTemperaturestepisdesignedonPrimarytogrowPar-the

primarynismssultsdecrease(summarizedthatparticlesoccurfurtherunderbydissolution–reprecipitationmecha-inTablehydrothermalI)clearlyconditions.TheBETre-particlesgrowthorincrystallitesurfaceareagrowth.thatcanindicatethatthereisaSEMbeinvestigationstranslatedtotheprimaryallnantlytheprimary(seeFig.particles2).TEMareinvestigationcrystalline;(seethefacesFig.3)confirmshowsthisthatParticle-size(D)orientedInfluencealongarepredomi-toclavedanalysisofAutoclavingthe<101>direction.

wasperformedTemperatureonsamplesonAggregation:thatsentedgrowth,inatFig.different4,revealtemperatures.that,inparallelTheresults,tothewhichwerearepre-au-areanimportantaggregationoccurs.Althoughprimarytheparticlefinesoftemperatureaggregatesunderestimated,(averagebecausesizeofof∼light0.3␮scattering,m)withchangestheformationinthepore-sizeTheautoclavingisclearlytemperaturevisible.

alsohasaninfluenceonthewilldeposition,distributiontheconcentrationofthefinalTiOtheof2solidsfilm(seeinFig.thesuspension5).DuringcontactincreaseondryinguntiltheaggregatescomeintophysicalThen,shape.thewitheachotherandformathree-dimensionalnetwork.thatanareTheporesizesaredeterminedbytheaggregatesizeanddictatedlatterbyisdependentontheaggregationmechanismsfilmidenticalpension.willbecoatinggreatlyprocedure,thechemicalinfluencedtheenvironment.Therefore,forbypore-sizethedistributioninthepresentaggregatecaseInfact,betweenwehavetheobservedaverageporeadirectaggregatesizeinsus-sizecorrelationinthewillasbeinfluencedsize(seebyFig.many6).Ofothercourse,andtheaverageprocessingthepore-sizeparameters,distributionSometheamountsections.

oftheseoftopicsbinderwillorbethediscussedsinteringtemperatureinthefollowingandtime.suchsub-mation:(E)InfluenceofAutoclavingTemperatureonRutileFor-autoclavedXRDtures.in0.1analysiswasperformedonsamplesthatwerewerethatautoclavedTheresultsatareMnitricpresentedacidinsolutionFig.7.Onlyatdifferentthesamplestempera-thatScherrercorrespondeda∼relation,wetotemperatureofՆ240°Cexhibitedpeakscalculatedtherutilethephase.UsingtheDebye–larger200nmaddition,thaninthethe250°Crutilecrystallitesizetobeaveragesample,whichisanorderofmagnitudewhetherparticlesthenoprogressiveanataseobservationgrowthcrystallitesize(15nm).InwasviawasXRDobserved,orregardlessofwerecrystallites.alreadyappearedanordersuddenlyofmagnitudeatatemperatureSEM.largerthanofthe240°CTherutileanataseandtionthatgatesinvolvedofanataseAlltheseobservationssuggestthatthetransforma-sometorutileproceededbyacooperativetransitioncooperativebeforeshowntransitiontherutilelocaltransitionrearrangementsintheanataseaggre-issupportedoccurred.bytheThishypothesisofainsidelater,theinFig.larger8,whererutileclusterscrystals.ofmicrographsthatareMoreover,anataseparticlesasareburiedventsmodificationphase,thisaggregationoftheandtitaniumpreventsalkoxidetheformationbyaceticwewillshowofacidthepre-preventingevendrothermalaggregationatatemperatureoftheofanatase250°C;particlesthissuggestsrutileduringthat,thehy-byservationstep,theformationofrutileisprevented.Thisob-study(F)Influencealsoconfirmsofthecooperativenatureofthetransition.morphologytheinfluenceacidoftheparticles,ofpHpHduringduringtheHydrothermalStep:Tosampleshydrothermalgrowthonthein0.1(i)have0.1Mbeennitricautoclavedacidatatemperaturethatwereof250°Chydrolyzedfor12inhBETMsolution,(ii)ammoniaatpH11,and(iii)underresultstriethylamineatpH13.SEMmicrographs(Fig.9)andgestsronment.thatbasic(TableII)bothshowthattheparticleswerelargerOstwaldconditionsripeningthanunderacidicconditions,whichsug-thatconditionsareformedThisobservationinabasicsuggestsismoreimportantinabasicenvi-environmentthatthetransientspeciespH(acidicareconditions).morestableThisthanstabilitythosewhichunderoftheareintermediateformedhydrothermalatspe-

lowciesand,therefore,theincreaseinthesolubilityoftheTiO2,alsocouldbeduetoacomplexationbythecounterion(NH4+ortriethylamine)thatstabilizestheanionicspeciesthatisformedbydissolutioninamannerthatisanalogoustothatwhichhasbeenobservedwithsulfate(SO42−)orfluoride(F−)ions.14Inaddition,theredissolutionoftheTiO2increasesastheconcentrationofbaseincreases,inamannerthatissimilartowhathasbeenobservedinhydrothermalgrowthinacidicmedia.15(G)InfluenceofBinderAddition:Tostudytheinfluenceofbinderadditiononfilmporosity,differentamountsofcar-bowax(PEG,MWס20000)wereaddedtoasuspensionofP25(DegussaAS,Frankfurt,Germany)in0.1Mnitricacidsolution.P25waschosenbecauseofthepossibilitytoproduce

crack-freefilmsthatare10␮mthickwithoutanybinderad-dition.Pore-size-distributionanalysisandtotal-porositymea-surementswereperformedonthedifferentsamples,andtheresultsarepresentedinFigs.10and11.Forthesamplesthatcontained0,10,and30wt%ofbinder,theaverageporesizeremainedcenteredat30nm,althoughthedistributionbecamebroadertowardthelargerpores.Increasingtheamountofcar-bowaxincreasedthetotalporosity,asshowninFig.11,whichsuggeststhattheaverageporesizewasstilldependentontheaverageclustersize,whichwasconstantinthethreesamples.Forthesamplethatcontained50wt%ofbinder,theaverageporesizeincreasedto50nmandthedistributionwasmuchbroader,withporesaslargeas120nm,whichsuggeststhatweareinaregionwherethemorphologyoftheporousnetworkisnotgovernedbythepercolationoftheTiO2clustersanymore.Infact,aproportionofcarbowaxof50%oftheweightofTiO2representsabinder:TiO2volumeratioof19.

(H)InfluenceofSintering:Filmswerefiredat400°,450°,500°,and550°Catarateof5°C/mininairtostudytheinfluenceoftheheat-treatmenttemperatureonthefinalfilmmorphology.Deformationofourborosilicateglasssubstratesat600°Climitedourheattreatmenttoamaximumtemperatureof550°C.Adecreaseinsurfacearea(seeTableIII)revealedthatsinteringwasoccurring,evenattheselowtemperatures;thiswasconfirmedbydilatometry,whichshowedthatpelletsthatweremadebydrypressingtheTiO2nanoparticlesstartedtoshrinkinthetemperaturerangeof∼350°–400°C.Thepore-sizemeasurementthatwasperformedonthefilmsshowedthatporecoarseningwasoccurringduringsintering(seeFig.12(a)).Theaverageporesizeincreasedfrom15nm,atatemperatureof400°C,to20nm;morespecifically,thenumberofsmallpores(i.e.,<10nminsize)decreasedsubstantiallywhile,si-multaneously,thepore-sizedistributionexpandedtowardthelargerpores.Stabilizationofthisporecoarseningwasobservedafteratemperatureof500°Cwasattained(i.e.,thepore-sizedistributiondidnotchange).

Whenthefilmswereintroduceddirectlyatatemperatureof500°Candfiredfortimesthatrangedfrom30minto5h,tostudytheinfluenceofthesinteringtimeonthefinalfilmmi-crostructure,asimilarphenomenawasobserved(seeFig.

Fig.8.SEMmicrographsofafilmsynthesizedfromacolloidautoclavedat260°C.

12(b)).Asthesinteringproceeded,porecoarseningoccurredsimultaneously.

(2)InfluenceofTiO2ElectrodeMicrostructureonthePhotovoltaicProperties

(A)InfluenceofPore-SizeDistribution:Tostudythein-fluenceofthepore-sizedistributiononthephotovoltaicre-sponseofthesolarcells,twofilmsthathaveasimilarsurfacearea(∼55m2/g)butdifferentpore-sizedistributions(seeFig.13)havebeenusedasphotoelectrodesforoursolarcellstocharacterizetheirphotovoltaicproperties.Theircurrent–volt-agecurveshavebeenrecordedunder1Sunand1/10Sun.TheresultsaresummarizedinTableIV.Theelectrodewiththesmallerporesexhibitsanimportantnonlinearity(i.e.,tobelinear,thecurrentat1Sunshouldbelargerthanthecurrentat1/10Sunbyafactorofexactly10).Underreducedillumination

TableII.SurfaceAreaandAverageParticleSizeforColloidsPeptizedinAcidbutAutoclavedat250°Cat

DifferentpHValues

Powder

Surfacearea(m2/g)

dBET†(nm)

Ina0.1Msolutionofnitricacid(pH1)Inasolutionofammonia(pH11)Ina0.1Msolutionoftriethylamine(pH13)

1087642

14.52037

†Averagediameterback-calculatedfromthesurfacearea,assumingthatthepar-ticlesarespherical.

(1/10Sun),thetransportkineticsarefastenoughtoregenerate(i.e.,reduce)thedye;however,underfullillumination,tentimesmoredyemoleculesareactive,andthetransportofI3−/I−ionstoandfromthecounterelectrodeisnotfastenoughtofullyregeneratethedyemolecules.Thisobservationcouldbeexplainedbythefactthat,inporeswithadiameterof4nm,3nmareoccupiedbythedyemolecules(moleculardiameterof15Å(1.5nm))thatareadsorbedontheporewalls,whichleavesanapertureofonly1nmforthediffusionoftheelec-trolyte.ThisdistanceisverysimilartothesizeoftheI3−ion,especiallyifoneconsidersitssolvationshell,andFick’slawofdiffusionisnotvalidanymore.Thediffusionkineticsinthe

TableIII.InfluenceofSinteringConditionsonSurfaceAreaofFilms

Filmconditions

Surfacearea(m2/g)forvarioussinteringtemperatures400°C450°C500°C550°C

Surfacearea(m2/g)forvarioussinteringtimes

30min1h2h5h

Sinteredby5°C/minand30min

Fireddirectlyat500°Cinair

12610410188

12111110386

TableIV.ComparisonofPhotovoltaicPropertiesofTwoTiO2ElectrodeswiththeSameSurfaceAreabutDifferent

Pore-SizeDistributions

ISC(mA/cm2)

V0C(mV)

Efficiency(%)

Electrodewithaverageporesizeof4nm

eculesperunitvolumeoffilm,which,intermsofelectrodemicrostructure,istheproductofthesurfaceareaandtheden-sityandcanbeexpressedbythesurfaceareaofTiO2perunitvolumeoffilm.

(3)RoleofTiCl4Post-Treatment

TheTiCl4treatmentincreasestheinjectionofelectronsintotheTiO2(seeFig.14)and,thus,thecurrentthatisdeliveredbythesolarcell.Twohypothesescanexplainthisimprovementoftheinjectionaftertreatment:(i)smallparticlesarenucleatedonthesurfaceofourelectrodeand,thus,thesurfaceareaandtheamountofdyethatisadsorbedincreases,or(ii)theelectronpercolationintheTiO2mesoporousfilmisimproved.

TableVshowsthattheTiCl4treatmentdecreasesthesurfaceareaofthefilms.Therefore,thefirsthypothesiscanbere-jected.Inaddition,theTiCl4treatmentdecreasestheaverageporesize(seeFig.15)andtheporosity(seeTableV).AllthisdatasuggeststhatthetitaniumcomplexesthatarepresentintheTiCl4solutioncondenseattheinterparticleneck.Thishypoth-esisisconsistentwiththepore-sizereduction,thesurface-arealoss,andthedensificationthatareobservedinthefilmsaftertheTiCl4treatment.Inaddition,theincreaseoftheneckingbetweentheparticleswillfacilitatethepercolationoftheelec-tronsfromoneparticletotheother,whichwilllowerthere-combinationprobabilityandleadtoaglobalincreaseofthecurrent.More-sophisticatedanalysissuchasfemtosecondfluo-rescencespectroscopywouldbeneededtoprovethatthere-combinationrateisactuallyaffectedbythistreatment.(4)InfluenceofPrecursorChemistryonFilmMorphology

Itiswellknowninsol–gelchemistrythattheprecursorchemistryinfluencesthehydrolysisandthecondensationki-neticsand,thus,thefinalmaterialmorphology.Inthepresentcase,wehaveattemptedtwodifferentapproachestocontrolournanoparticlesizeandmorphology.Thefirstapproachcon-sistedofsubstitutingtheisopropoxygroupswithmore-hydro-lyzable(ethoxy)groupsandless-hydrolyzable(n-butoxy)groups.Inbothcases,thealkoxidesareintheformofoligo-mers,whichiscontrarytotitaniumisopropoxide,whichisamonomer.16Thepresenceofoligomersisknowntoslowthecondensationreactions.Thesecondstrategyconsistedofsub-stitutingoneisopropoxygroupwithaless-hydrolyzablegroup(i.e.,acetateoracetylacetone).Experimentsthatwerecon-

1/10Sun1Sun1/10Sun1Sun

1.49.2550620560630

4.723.384.95

Electrodewithaverageporesizeof20nm

1.312.1

electrolytebecomethelimitingstepinthecurrentproduction,which,ofcourse,hasadramaticinfluenceontheefficiency,whichdecreasesfrom4.7%to3.4%.Inthesamplethathasthelargerporesize,nononlinearityisobservedandtheefficiencyisthesameat1/10Sunor1Sun.

Therefore,thepresenceofsmallporesslowsthediffusionintheelectrolyteand,thus,affectsthephotovoltaicresponseofthesolarcell,especiallyunderhighillumination.Ofcourse,otherparameters,suchastheviscosityoftheelectrolytesol-ventandtheconcentrationofiodine,willaffectthetransportkinetics.

(B)InfluenceofSurfaceAreaandPorosity:ThecurrentthatisproducedbythesolarcellsisdirectlylinkedtothenumberofdyemoleculesthatareadsorbedontheTiO2elec-trode.Therefore,thehigherthesurfacearea,thehigherthecurrentthatisgeneratedbythesolarcell;thisisoneofthekeyreasonsforusingTiO2nanoparticles.

Theporosityoftheelectrodealsodrasticallyinfluencesthephotovoltaicproperties.InFig.14,wehaveobservedthatTiO2electrodesthathaveaconstantfilmthickness(∼10␮m)andaconstantsurfacearea(∼55m2/g)butanincreasingporositygeneratelesscurrent.Thisphenomenonisexplainedbythefactthat,whentheporosityincreases,themassofTiO2persquarecentimeteroffilmdecreases;thus,thetotalTiO2surfacepersquarecentimeteroffilmdecreases.Iflesssurfaceisavailable,thentherearelessdyemoleculesthatareadsorbedpersquarecentimeteroffilm;thus,thecurrentdecreasesastheporosityincreases.Ifthecurrentdecreases,thentheefficiencyofthesolarcellautomaticallydecreases.Infact,thedeterminingfig-ureofmeritforthephotocurrentisthenumberofdyemol-

ductedmodifiedbysols.

precursorsLivageetal.17ledtoshowedmorethatmonodispersethehydrolysisandofsmallersuchsentedTheBETtheinTableresultsVI.ofSubstitutingthecorrespondingethoxyorpeptizedsolsarepre-ately.isopropoxycondensationTheeffectgroupofthedoessubstitutionincreasethesurfacen-butoxyareagroupsmoder-forwater:alkoxidereactionthatratio(i.e.,are50maskedmolofbecauseonthehydrolysisandtheHofthevery-highoreffectacetylhasbeenmodification,isacetoneusedinoursynthesis.Modification2Opertitaniumbyaceticatom)acidmoreimportanthasadrasticintheeffectcaseonofthethesurfaceacetylarea.Thenotfortunately,ashydrolyzablebecauseasthethetitaniumtitaniumacetateacetylacetone(CH(acac-Ti)acetonateis3COO-Ti).thermaltheacetylacetonedecomposesduringthehydro-Un-acid-modifiedTherefore,growth,wewhichwillconcentrateleadstoaheavilyontheaggregatedstudyofthesol.acetic-isTiO2.TableVIshowsthathydrothermalgrowthobservedmoreimportantisopropoxide;inthecolloidinthethatmodifiedhasbeencolloidsynthesizedthanfromthatwhichisand,conditions.therefore,thiscanisduedissolvetothemorefactthattitaniumeasilytheparticlesaresmallerOstwaldfirmedripeningThesmallereffect.theThisparticles,highergrowththemoreunderratepronouncedhydrothermalhasbeenthethismodifiedcolloidbySEMthat(seehasFig.been15).synthesizedAnotherremarkablecon-fromthefeatureofparisonisopropoxide,withprecursorthatwhichisthathasitisbeenalmostsynthesizednonaggregated,acetic-acid-fromtitaniumincom-locatedandatthesurfacewhichsuggestsoftheparticlesthattheactacetateasagroupsthatareThepreventlastcharacteristicaggregationduringofthisthecolloidhydrothermaldispersing(butnotthestep.

agentleastim-

portant)electrodesisusingarethatmuchthephotovoltaicbetterthanthatperformanceswhichhasofbeentheresultingterizationtheincreased(e.g.,classicalTEM)routeisunderway(seeFig.16).todetermineMore-detailedprocessedwhethercharac-towhichadifferentperformanceswillenablecrystallographicaredueabetterinjection.

orientationtothefilmofmorphologythesetheparticleonlyfaces,or(5)PhotovoltaicInfluenceResponseofScatteringofSolaronCells

thebeenTheandautoclavedelectrodesatthattemperaturesarepreparedՅ230°CusingarecolloidsfullythathaveautoclavedthosethatTheabovehavethisbeentemperaturemadefromarecolloidstransparent,translucentthathavebeenbeenelectrodesbecauseautoclavedthatatare250°Csynthesizedgiveafromtheparticlesorthatopaque.haveincreasesofthus,thetheirpathabilitylengthtoscatterbetterphotovoltaicresponse,oflight.Thescatteringoflightandimportantinjectincreasesanitsprobabilitythetointeractphotonswithinsideadyethemoleculecelland,dyeforelectrontheredlightinto(wavelengththesemiconductor;of∼700thisnm),isespeciallyteredisthewithnotverythisefficient.processtemperature:Certainlimitationswhereour(i)havebeenencoun-is(updifficultcolloidtothatreproducehasbeenautoclavedatathetemperaturesizedistributionof250°Cofnmto30wt%),whichandisphotoactive(ii)thecolloidatwavelengthscontainssomeofrutile>400commercialToandcontrolshouldthebenumberavoided,offorscatteringlong-termcentersstabilityinthereasons.teringcolloidparticlesanatasewaspowdermixed(Fluka)withourthatsynthesizedcontainedtransparentlargelayer,scat-aanatasethathadawasbroadautoclavedparticle-sizeatadistributiontemperaturethatofwas230°C.centered

ThisTableVI.InfluenceofPrecursorChemistryonSurfaceAreaandParticleSizeoftheCorrespondingPeptizedSols

Precursor

Surfacearea(m2/g)

dBET†(nm)

TitaniumisopropoxideTitaniumethoxideTitaniumbutoxideTitaniumisopropoxide

modifiedwithaceticacidTitaniumisopropoxide

modifiedwithacetylacetone

165186175217293

9.58.48.97.25.3

†Averagediameterback-calculatedfromthesurfacearea,assumingthatthepar-ticlesarespherical.

at∼300nmandasurfaceareaof8m2/g.TheFlukaparticles,although99%anatase,werecoatedwithaverythinlayerofsilica(SiO2)orsiliconederivatives;thiswasdiscoveredbystudyingthezetapotentialevolution,relativetopH.Theiso-electricpointoftheFlukaparticleswas2.9(insteadof6.5–7foranatase),whichcorrespondedtothatofSiO2andwaslatterconfirmedbyelectronspectroscopyforchemicalanalysis(ESCA).ThepresenceofSiO2atthesurfaceoftheparticlesposedtwoproblems.Thefirstproblemwasthattheparticlesdidnotsinterattemperatures<1000°C;therefore,thelargeparticleswereembeddedandheldbythenanoparticlesthatsinteredaroundthem(seeFig.17).NofilmswithadecentmechanicalresistancecouldbeobtainedwithՆ30wt%Flukaparticles.At30wt%,wereachthepercolationthresholdandthelargeparticlesarecomingintocontactwitheachother;becausetheydonotsinter,themechanicalstabilityofthelayerislost.ThesecondconsequenceofthepresenceofaSiO2layeratthesurfacewasthattheseparticleswereinactive,withre-specttotheinjection,whichexplainswhy,inadditiontothefactthatmoreFlukaparticleslowerthesurfaceareaofthefilm,theoptimumcompositionwas85%ofnanocrystallineparticlesthathadbeenautoclavedatatemperatureof230°Cand15%Flukaparticles.

Acomparisonofspecularanddiffusetransmissionsbetweenasolarcellwithatransparentelectrodeandasolarcellthatincorporatesscatteringcenters(seeFig.18)clearlyillustratestheeffectofthescatteringparticles.Increasedadsorptioninthesamplethatcontainsthescatteringparticlesleadstobetterinjection,especiallyintheregionof>600nm.Tounderstand

theinfluenceofotherimportantparameters,suchasthesizedistributionofthescatteringparticlesandthethicknessofthelayer,wearecurrentlydevelopingamodelfortheopticalprop-ertiesofthesolarcell.

IV.

Conclusions

WehaveshownthattheTiO2electrodemicrostructurecanbecontrolledbycontrollingdifferentprocessingstepsduringthesynthesisofthenanoparticles.ThesizeoftheprimaryparticlesandthesurfaceareaarecontrolledbyparameterssuchasthetemperatureandpHduringthehydrothermalstep.Theaverageporesizeisdependentontheaveragesizeoftheag-

gregatesthatareformedduringthepeptization.Thepore-sizedistributioncanbealteredbyaddingvariousamountsofbinderorbyvaryingthesinteringtemperatureandtime,thuspromot-ingporecoarsening.Theformationofrutileduringthehydro-thermalstepcanbeavoidedbymaintainingatemperatureof<240°Corbypreventingaggregationbymodifyingthepre-cursorswithaceticacidorsomepolymericdispersingagent,suchaspoly(acrylicacid)(PAA).

Bycontrollingthepore-sizedistribution,wecanensureagooddiffusionoftheelectrolyteand,therefore,increasethelinearityandfillfactorofthecell.Iftheporesaretoosmall(i.e.,Յ4nm),adegradationintheperformanceofthesolarcellisobserved.Bycontrollingthedensityandthesurfaceareaofthenanocrystallinefilm,wecancontroltheamountofdyethatisadsorbedintheelectrode.Thisquantityisdirectlylinkedtotheelectroninjectionandthecurrentthatisproducedbythecorrespondingsolarcell.ThecurrentcanbefurtherenhancedbytreatingtheTiO2electrodewithTiCl4,whichresultsininterparticleneckgrowthandfacilitatestheelectronpercola-tionthroughtheTiO2.

Theadditionoflargerparticles(300–400nm)tothenano-particlesincreasesthescatteringofthefilmandincreasestheadsorptionintheredportionofthespectrum,whichincreasesboththeinjection,especiallyinthewavelengthregionof>600

December1997NanocrystallineTitaniumOxideElectrodesforPhotovoltaicApplications3171

nm,oftransparencytheandscatteringthecurrentalsothatisiscriticaldeliveredbythesolarcell.ControleffectFinally,theischoicerequiredof(i.e.,titaniumactiveforsomeapplicationswhereprecursorswindow).

hasasubstantialtureonboththecrystallitesizeandtheelectrodemodifyingand,consequently,thefinalphotovoltaicproperties.microstruc-Bymodifyticles;tionthisthethetitaniumisopropoxidewithaceticacid,weresults,condensationafterreaction,thusproducingsmallerpar-ide),ofpreventedwhichlargerarecrystalliteshydrothermaltreatment,intheproduc-verylightly(comparedwiththepureisopropox-Althoughprecursorthebythereasonspresencearenotofisopropoxyaggregated.groupsTheaggregationatthesurface.isformances.leadsproach,Wetohopeelectrodesyetfullyelucidated,themodifiedthat,bywithusingimprovedphotovoltaicper-matelyhigh-powerbreakwecanapplications.thefurtherthistypeofmolecularap-10%efficiencyimproveourbarrier,photoelectrodeswhichisneededandulti-forAcknowledgments:

ConradinvoltaicfrommeasurementsVonPlanta,forTheauthorswouldliketothanktheircoworker,

andfruitfulDr.PauldiscussionsBowenandandProfessortechnicalhelpHeinrichfortheHoffmanphoto-powder-characterizationthePowderTechnologyauthorsequipment,LaboratoryaswellatEPFLasforforstimulatingprovidingaccesstotheirthehigh-resolutionareindebtedtransmissiontoR.Wessickenelectronforthemicroscopyhelpinrecordingdiscussions.(HRTEM)andpatterns.

interpretingTheReferences

1(1995).A.P.Alivistos,‘‘SemiconductorNanocrystals,’’MRSBull.,20[3]23–322chiometryJ.C.Parker(1992).ofNanophaseandR.W.MetalSiegel,Oxide‘‘OpticalMaterials,’’DeterminationNanostruct.oftheMater.,Oxygen1,53–57Stoi-3mentJ.S.MaterialsinForesiMicrocrystallineandT.D.Moustakas,‘‘Piezo-resistanceandQuantumConfine-ResearchSocietySilicon’’;Symposiumpp.77–82Proceedings,inLightVol.Emission256.EditedfrombySilicon,S.S.

Iyer,PA,1992.R.T.Collins,andL.T.Canham.MaterialsResearchSociety,Pittsburgh,4CeramicsT.G.Nieh,andCeramicJ.Wadsworth,Composites,’’andF.Wakai,Int.Mater.‘‘RecentRev.,Advances36,146–61inSuperplastic(1991).5‘‘Preparation,M.M.Boutz,R.J.OldeScholtenhuis,A.J.YttriaMicrostructuralControlandSuperplasticityWinnubst,andofA.NanostructuredJ.Burggraaf,BritishStabilizedCeramicsTetragonalProceedings,ZirconiaVol.51.Ceramics’’;R.Freer,London,pp.75–86U.K.,inNanoceramics,1993.6CeramicQ.XuandZrOMembranes:andM.A.Anderson,Preparation‘‘Sol–GelandRoutetoSynthesisofMicroporousSoc.,Characterization77[7]1939–45ofMicropourous(1994).TiO27SwitchingA.Hagfeldt,2Xerogels,’’J.Am.Ceram.N.Vlachopoulos,andM.Soc.,141[7]in82–84Nanocrystalline(1994).OxideSemiconductorGraetzel,Films,’’‘‘FastJ.ElectrochromicElectrochem.8BasedB.O’ReaganandM.Graetzel,‘‘ALow(1991).onDyeSensitizedColloidalTiOFilms,’’Cost,NatureHigh(EfficiencyLondon),353Solar,737–39Cells29Liska,M.K.Nazeeruddin,A.Kay,I.Rodicio,R.Humphry-Baker,E.Mu¨ller,P.byChem.Charge-TransferN.Vlachopoulos,andM.Graetzel,‘‘ConversionofLighttoElectricitySoc.,115,6382–90Sensitizers(1993).onNanocrystallineTiO2Electrodes,’’J.Am.1023J.Livage,‘‘Synthesis,StructureandApplicationsofTiO2posiuminBetterUlrich.MaterialsProceedings,CeramicsResearchVol.Through73.Society,EditedChemistryPittsburgh,byC.II,J.MaterialsBrinker,ResearchGels’’;pp.717–PA,1986.D.E.Clark,SocietyandSym-D.R.11GraP.Bonhoˆte,A.-P.Dias,N.Papageorgiou,K.Kalyanasundaram,andSalts,’’¨tzel,Inorg.‘‘Hydrophobic,Chem.,35,Highly1168–78Conductive,(1996).Ambient-TemperatureMoltenM.12crystallineC.VonPlanta,‘‘Photo-electricalCharacterizationofDyeLausanne,Switzerland,Cells’’;Ph.D.1996.Dissertation.SwissFederalInstituteSensitizedofTechnology,Nano-13als’’;P.seeMcFaydenRef.5,pp.and175–85.D.Fairhurst,‘‘ZetaPotentialsofNanoceramicMateri-14Paris,J.-P.France,Jolivet,1994.DelaSolutiona`l’Oxide;pp.193–95.Intereditions/CNRS,15J.-P.Jolivet,ibid,pp.99–100.16Press,G.NewW.SchererYork,1990.andC.J.Brinker,Sol–GelScience;pp.43–49.Academic17ficationsC.Sanchez,Processing.ofTitaniumF.Babonneau,S.Doeuff,andA.Leaustic,‘‘ChemicalModi-Wiley,NewPrecursors’’;York,1988.pp.77–87inCeramicUltrastructureandᮀ

因篇幅问题不能全部显示,请点此查看更多更全内容