您的当前位置:首页正文

说教材《分数乘法》

2023-05-09 来源:星星旅游
苏教版六年级数学上册《分数乘法》说教材

本单元教学分数乘法,是在理解了分数的意义,掌握了分数加、减法计算的基础上编排的。能进一步理解分数的意义,为教学分数除法打下基础。教学内容以计算为主,包括分数与整数相乘、分数与分数相乘。教学要求是理解算理、掌握算法,能应用于分数连乘计算和解决实际问题中去;在探索算法、总结法则的过程中发展数学思考的水平。下表是全单元教学内容的编排。

教材在编排上有以下特点。

第一,以计算法则的教学为编排主线,把运算的意义、方法以及实际应用的教学有机结合在一起,优化了全单元的内容结构。

乘法运算的范围从整、小数扩大到分数,其意义、算法以及实际应用都有较大的发展。所以,分数乘法的意义、计算法则、解决实际问题是本单元的三个重要内容。教材以计算为主线,在研究算法的过程中体会运算意义,通过运算概念的完善、发展,进一步理解算法;在解决实际问题的背景中教学计算知识,应用学到的算法解决实际问题。意义、法则、应用三方面的有机结合,优化了知识结构,能充分发挥教学的功能和价值。如,例1从做绸花要用多少米绸带的实际问题引出分数乘整数的计算问题,把原来的乘法概念扩展到分数范围,激活已有的知识经验;应用同分母分数加法的知识,体会并得出分数乘整数的计算方法,既解决了做绸花的实际问题,又解决了新的计算课题。又如,例2为解决做绸花的实际问题列算式10×1/2和10×2/5,联系现实的数量关系体会这些算式的具体含义,得出“求一个数的几分之几是多少,能够用乘法计算”的结论,发展了乘法的意义。在计算两个乘法算式时,巩固了分数与整数相乘的算法。

第二,知识发展线索清晰,前后联系紧密,各道例题的教学任务明确。下列图是本单元教材里的计算知识结构图。

先教学整数乘分数,后教学分数乘分数,符合简单到复杂的编排原则。而且,整数乘分数还能与整数乘法建立联系,应用整数乘法知识,为分数乘法的教学开好头。

整数乘分数先是求几个相同分数的和,再是求整数的几分之几是多少。前者在运算意义上与整数乘法一致,算法是例1的重点。正因为运算意义和整数乘法一致,能够把整数乘分数转化成同分母分数相同,体会并得出整数乘分数的计算法则。后者在运算意义上有很大的扩展,乘法不但能求几个相同加数连加的和,还能求一个数的几分之几是多少,这是例2的教学重点。例3求比一个数多(少)几分之几的数是多少?

分数乘分数先教学基础知识,再培养计算技能。例4和例5要把“求一个数的几分之几是多少”的理解迁移到分数乘分数,深入理解分数乘法的意义,还要解决分数乘分数的算法,并形成统摄分数乘整数、分数乘分数的计算法则。所以,这两道例题着重教学基础知识。例6教学分数连乘,巩固计算法则的同时,培养分子、分母交叉约分的技能。

第三,编排“倒数”知识,为分数除法作准备。分数除法经常要转化成分数乘法实行计算,转化需要倒数的知识。所以,本单元在分数乘法的教学基本完成以后,编排了相关倒数知识的一节教材和一个练习,为下一单元的教学提前作准备。

一、 例1——着重教学分数与整数相乘的算法。

首次教学分数乘法,教材除了从实际问题引出,还尽量与整数乘法靠近,充分利用已有的知识、经验,构建新运算的意义与算法。创造迁移的条件,引导学生主动写出分数乘

法算式;营造探索的气氛,放手让学生创新分数乘整数的方法。

例1的第(1)个问题求3个相同分数的和。在代表1米绸带的线条图上,已经表示出做1朵绸花用的绸带3/10米,要求学生继续涂色表示做3朵绸花所用的米数。通过涂色,体会实际问题里的数学问题是“求3个3/10是多少”,看到做3朵绸花用的绸带是9/10米,激活已有的乘法概念以及同分母分数加法的知识。于是,一些学生会列加法算式3/10+3/10+3/10,另一局部学生会列乘法算式3×3/10或3/10×3。比较加法算式和乘法算式,实现原有运算概念的迁移:求几个相同分数相加的和,用乘法算比较简便。分数乘法算式和整数乘法算式一样,不区分被乘数和乘数,求3个3/10是多少,算式3×3/10和3/10×3都能够。让学生研究分数乘整数的算法,把“分子相加、分母不变”加工成“分子与整数相乘,分母不变”,获得新的计算方法。尤其是在方框里填数: 3/10+3/10+3/10=□+□+□/10=□×□/10,经历“分子相加”转化成“分子与整数相乘”的过程,建构了新的计算方法。

例1的第(2)个问题求做5朵同样的绸花一共用绸带的米数,不再从分数加法过渡到分数乘法,直接写出乘法算式,并用分数乘整数的方法计算。把例1的学习成果作为例2的教学资源,进一步体验应用分数乘整数解决相同分数连加的问题比较简便,巩固运算的意义和方法。这道例题还指导了分数乘法中的约分,“兔子”卡通先把分子与整数相乘,再把积约分化简。“大象”卡通先约分,再相乘。前一种方法学生比较熟悉,在计算分数加、减法时,经常先按法则计算,再化简结果。后一种方法因为先约分,算得的积是最简分数,而且“相乘”也更简单。要指导学生理解并喜欢“大象”卡通那样的算法,对下面继续教学分数乘分数有好处。

二、 例2——着重教学用乘法求一个数的几分之几是多少。

10朵绸花的1/2是几朵?10朵绸花的2/5是几朵?这些问题学生在三年级(下册)“理解分数”里以前解答过。那时的解答是通过10÷2、10÷5×2这些整数乘除运算实行的。例2再次教学这些实际问题,要应用分数乘法的知识解答,概括出“求一个数的几分之几是多少,用乘法计算”这个结论,并用于解决其他求一个数的几分之几是多少的问题中去。

在例2之前,乘法只用于求相同加数的和。教学例2之后,乘法还能够求一个数的几分之几。这是乘法概念的扩展。为了协助学生理解乘法的新含义,例2在编写时注意了以下三点:

首先是增强分数的意义。用10朵花平均分成2份,其中1份是红花的图画,对10朵的1/2作出具体而形象的解释。一方面让学生在体验“10朵的1/2”的意义时,想到10÷2=5这种算法。另一方面又利用十分熟悉的10÷2促动对10的1/2的理解。教学10朵的2/5,让学生在图画里圈出绿花,经历把10朵花平均分成5份,其中2份是绿花的操作过程,以及10÷5×2的计算过程,体会10的2/5的含义。

然后是讲述新知识。教材说:“求10朵的1/2是多少,能够用乘法计算。”并写出算式10×1/2。还说“求10朵的2/5是多少,能够用10×2/5”。在分数意义的平台上,指出分数乘法的实际应用。利用10×1/2和10×2/5这两个实例,概括出“求一个数的几分之几是多少,用乘法计算”。这个结论发展了原来的乘法概念,使乘法有了新的应用领域。

沟通新旧算法的联系,更好地理解分数乘法。假如比较算式10×1/2和10÷2,能够发现它们都是求10的1/2是多少,都是把10平均分成2份。虽然运算不同,意义却是相通的。同样,算式10×2/5和10÷5×2都是把10平均分成5份,求其中的2份,都是求10的2/5是多少。例题在教学分数乘法的初始阶段,安排这些可比照的内容,让学生反复体验分数乘法。

“练一练”增强概念。第1题先涂色表示12个圆的1/3、20个方格的4/5,感受“一个数的几分之几”的意义。再列式12×1/3、20×4/5计算,实行较抽象的思考并用数学方法解决“求一个数的几分之几”的问题。两者结合,增强了分数乘法的概念。第2题用“求一个数的几分之几”描绘图示的数量关系,在“现实问题→数学问题→数学方法”的过程中,进一步体验求一个数的几分之几是多少,用乘法计算。

例2列出的算式都是分数乘整数,它们的计算方法已在例1里教学。所以10×1/2、10×2/5都能够让学生计算,要提醒他们先约分,再相乘,尽量使计算过程简便些。

三、 例3——用分数乘法解决实际问题。

例2以及练习八第6~11题都是求一个数的几分之几是多少的实际问题。编排例3继续教学解决实际问题,是因为“比一个数多(或少)几分之几”是较难理解的数量关系,而这些关系又普遍存有于实际问题中。无论从知识的教学还是从知识的应用考虑,都需要单独编排例题。

解答例3的关键是理解红花比黄花“多1/10”、绿花比黄花“少2/5”的含义。从本质上讲,它们仍然是“一个数的几分之几”,但是比较难懂。教材用条形图表现三种花的朵数关系,表示黄花朵数的直条刚好是10格,表示红花的直条比黄花多1格,形象地表达了红花比黄花多1/10。例题还通过“红花比黄花多的是多少朵的1/10”这个问题,引导学生仔细研究图意,准确理解红花比黄花多的朵数相当于黄花的1/10。从而明白,求红花比黄花多多少朵,就是求黄花的1/10是多少朵,即50朵的1/10是多少。

四、 例4、例5——构建分数乘法的计算法则。

分数乘分数的计算方法并不复杂,记住和应用算法也不难。但是,理解为什么能够这样计算却很不容易,是再次应用分数概念展开演绎推理的过程。教材编排两道例题教学分数乘分数,充分发挥数、形结合的作用,让学生体会“分子相乘、分母相乘”是合理的。

构建分数乘法的计算法则,要把分数乘整数的算法纳入分数乘分数的算法之中,使前者成为一般算法里的特殊情况。教材在两道例题后的“试一试”里完成这个内容的教学。

例4是首次感知分数乘分数的意义和算法。先在长方形里涂色表示它的1/2,再画斜线表示1/2的几分之几,让学生在图上体会数量关系和运算的含义,看出结果。教材依次安排了三项学习活动:第一项活动是分别说出两个长方形中画斜线局部各占1/2的几分之几,引出新的数学问题: 1/2的1/4、1/2的3/4。得出这两个数学问题要仔细观察每个图里把1/2平均分成几份,斜线画了其中的几份,就能知道左图中画斜线的局部占1/2的1/4,右图中画斜线的局部占1/2的3/4。第二项活动要列出1/2的1/4、1/2的3/4的算式。应用初步形成的分数乘法概念,从“求一个数的几分之几用乘法计算”推理得出1/2的1/4能够用1/2×1/4计算,1/2的3/4能够用1/2×3/4计算。在写两道算式时,体会“一个数”不但是整数,也能是分数,进一步完善了分数乘法的概念。第三项活动从图中看出两道算式的积。因为1/2的1/4是长方形纸的1/8,1/2的3/4是长方形纸的3/8,所以1/2×1/4=1/8、1/2×3/4=3/8。在看图与写出积的过程中,初步感知分子相乘的得数是积的分子,分母相乘的得数是积的分母。

例5继续体会分数乘分数的算法。已给出了两道算式2/3×1/5和2/3×4/5,还在两个长方形里涂色表示了2/3。第一项学习活动是画图计算给出的两道算式。在画图前要先想算式的意义,才会准确画图和看到算式的积。如2/3×1/5是求2/3的1/5是多少,要把表示2/3的那个局部平均分成5份,用斜线画出其中的1份。斜线局部占长方形的2/15,2/15就是2/3×1/5的积。又如2/3×4/5是求2/3的4/5是多少,要把表示2/3的那块涂

色局部平均分成5份,用斜线画出其中的4份,由此得到2/3×4/5的积是8/15。第二项活动在乘法算式的右边写出积,让学生在写2/15和8/15的时候,感受积的分子“2”和“8”是两个乘数的分子的乘积,积的分母“15”是两个乘数的分母的乘积。

两道例题的教学线索不同,认知水准也不同。例4经历“看图—写式—得积”的过程,感受“分子相乘、分母相乘”的可能性。例5通过“看式—画图—得积”体验“分子相乘、分母相乘”的合理性。两道例题都让学生感受分数乘分数的算法,逐渐形成计算法则。

第55页应用“整数都能写成分母是1的分数”这个知识,把2/11×3和4×5/6都改写成分数乘分数的形式,使“分子相乘的积作分子,分母相乘的积作分母”也适用于分数乘整数的计算,成为分数乘法的计算法则。

五、 例6——教学分数连乘的算法和技巧。

例6用线段图表示数量关系,整理解题思路。先画一条线段表示一班做的绸花朵数,因为二班做的朵数是一班的8/9,所以把表示一班朵数的线段平均分成9份,便于画出表示二班朵数的线段。教材要求学生画表示三班做花的朵数,画的时候要分析“3”/4的意思,理解这里是把二班做的朵数看作单位“1”。通过画图就能很快知道应先算二班做的朵数。

六、 例7——教学倒数的知识。

倒数的知识主要是两点: 一点是倒数的概念,另一点是求倒数的方法。前一点是基础知识,后一点是计算分数除法所需要的基本技能。建立倒数概念之后,求一个数的倒数就容易了。所以,例7十分重视概念的形成以及对概念的准确把握。

教学从寻找乘积是1的分数开始。在8个分数中能找到3对乘积是1的分数,这项貌似游戏的活动凸显了“倒数”是乘积为1的两个数之间的关系,这也是教学倒数概念必须掌握的内涵。教材里三个卡通的交流,说的都是两个分数相乘的积是1,突出了倒数概念的一个内涵。下面的文字表达强调两个数“互为倒数”,还以3/8和8/3为例,协助学生体会“互为倒数”的意思指“甲是乙的倒数,乙也是甲的倒数”,这是倒数概念的又一个内涵。

因篇幅问题不能全部显示,请点此查看更多更全内容