您的当前位置:首页正文

Negative differential conductivity and population inversion in the double-dot system connec

2020-12-07 来源:星星旅游
Negativedifferentialconductivityandpopulationinversioninthe

double-dotsystemconnectedtothreeterminals

arXiv:cond-mat/0406577v1 [cond-mat.mes-hall] 24 Jun 2004LevG.Mourokh

DepartmentofPhysicsandEngineeringPhysics,StevensInstituteofTechnology,Hoboken,NJ07030

AnatolyYu.Smirnov

D-WaveSystem,Inc.,320-1985W.Broadway,Vancouver,

BritishColumbia,CanadaV6J4Y3

(February2,2008)

Abstract

Weexaminetransportandmicrowavepropertiesoftwocoupledquantumdotstakeninparallelconnectiontothecommonleftleadandconnectedtoseparateleadsattheirrightside.Inaddition,theareabetweentheleftleadandthedouble-dotstructureisthreadedbyAharonov-Bohmmagneticflux.Wedeterminetheenergiesandpopulationsofdouble-dotlevelsonthemicroscopicbasistakingintoaccounttheinterdotCoulombinteractionandshowthatatlargelead-to-leadbiasthepopulationinversioncanbeachieved.ForthecaseofstrongCoulombrepulsion,thisinversionleadstolevelcrossingaccompaniedbytheregionofnegativedifferentialconductivityinthecurrent-voltagecharacteristics,whereasforweakerCoulombrepulsion,theresonantmicrowaveabsorptionbecomesnegativeathighlead-to-leadvoltage.

Recentachievementsinnanotechnologyhaveledtoanewgenerationofsemiconductordevicesbasedonquantumdotsthatcanbeviewedasartificialatomsandmultiplequan-tumdotsystemsplayingtheroleofartificialmolecules[1].Inthesedevicesthequantum

1

propertiesofcarriersareexploredandtheCoulombinteractionisofcrucialimportanceinsuchsmalldevices.Initially,inmoststudies,thedotsweretakentobeconnectedinseries,but,recently,double-dotstructuresinwhichthetwoconstituentdotsareplacedinaparallelarrangementbetweenleadshavebeenalsoanalyzedtheoretically[2,3]aswellasexperimentally[4].Suchatwo-dimensionalsystemcanbethreadedbyAharonov-Bohm(AB)magneticfluxtoexamineinterferenceeffects.Inparticular,itwasshown[3]thatforasymmetricdouble-dotsystemhavingmolecularbondingandantibondingstates,oneofthesestatescanbedisconnectedfromtheleadsatappropriatevaluesoftheABflux,Φ.ThesevaluesareΦ/Φ0=2nfortheantibondingstateandΦ/Φ0=2n+1forthebondingstate,respectively,whereΦ0=hc/eisthefluxquantumandn=0,1,2,....Theelectronspinentanglerbasedonthetriple-dotsystemwithseparateleadsconnectedtoeachofthedotswasproposedinRef.[5].

InthisworkweexamineasystemcombiningthepropertiesofstructuresanalyzedinRefs.[3]and[5],i.e.thedouble-dotconnectedtothesameleadintheircommonleftsideinparallelarrangement,whileintheirrightsidethetwodotareconnectedtotheseparateleads(Figure1).Inaddition,theleftsideofstructureisthreadedbyABfluxwhichcanbeusedtocontroltheconnectionofthedouble-dotsystemtotheleftlead.Wedeterminethedouble-dotlevelpopulationsandshowthat,incontrasttothecaseofsymmetricdouble-dotcouplingtothesameleadsbothattheleftandattherightsidesofthestructure[3],theyexhibitdependenceontheABmagneticflux.Accordingly,thepopulationoftheantibondingstatecanbelargerathighlead-to-leadbiasthanthepopulationofthebondingstate,andeithertheantibondingstatebecomesthegroundstateofthesystemorthepopulationinversionisachieved.Wealsoanalyzethelead-to-leadcurrentandshowthat,inthecaseofstronginterdotCoulombcoupling,levelcrossingisaccompaniedbytheregionwithnegativedifferentialconductivityonthecurrent-voltagecharacteristics.

Thesecond-quantizedHamiltonianofthedouble-dotelectronsincludingtheinterdotCoulombinteractionisgivenby

2

+++++

H0=E0(a+1a1+a2a2)−∆(a1a2+a2a1)+Ua1a2a2a1,

(1)

wherea+i,aiarethecreation/annihilationoperatorsforelectronsini-thdot(i=1,2),−∆isatunnelingconstantbetweenthedots,U=e2/2dε(εisthedielectricconstant).TheHamiltonianoftheleadshastheform

HLeads=

󰀁

k

ELkc+LkcLk+

󰀁

k

ER1kc+R1kcR1k+

󰀁

k

ER2kc+R2kcR2k,

(2)

wherec+αk(t),cαk(t)arecreation/annihilationoperatorsofelectronswithmomentumkintheα-lead(α=L,R1,R2).TheeffectofABfluxonquantumtransportcanbetakenintoaccountusingthePeierlsgaugephasefactorsexp(±iφ)inatransfermatrixdescriptionoftunnelingbetweentheleftleadanddots,withφ=Bld/4Φ0isthephaseexperiencedbyanelectronduringthelead-double-dottunnelingprocess.Withthis,theHamiltonianfortunnelingbetweendotsandleadsiswrittenas

Htun=

󰀁

k

Lkc+Lk(a1e

+a2e

−iφ

)+

󰀁

k

R1kc+R1ka1

+

󰀁

k

R2kc+R2ka2+h.c.

(3)

EmployingtheproceduresofRef.[3],wederiveandsolvetheequationsofmotionforGreen’sfunctionsofthedouble-dotelectrons,obtainingaself-consistentsetofequationsforthelevelpopulations,

NA,B=

andthelevelenergies

EA,B=E0±∆+UNB,A,

(5)

fL(EA,B)(1±cos2φ)

2(2±cos2φ)

,

(4)

wherefα(EA,B)arethedistributionfunctionsofelectronsintheleftandrightleadstakenattheenergiesofthedouble-dotlevelsas

fα(EA,B)=exp

󰀅

󰀃

EA,B−µ−(−1)ǫαeV/2

leads.ItshouldbenotedthatthemagneticfieldinducedphaseisnotcancelledinEq.(4)asitwasinthecaseofsymmetricalconnectionstothesingleleftandrightleads[3],wherethepopulationsweregivenbyNA,B=(fL(EA,B)+fL(EA,B))/2.Inthelattercasethelimitinghigh-biasvaluesforthepopulationsofbothlevelswere1/2withthepopulationoftheantibondingstateapproachingthisvaluefromaboveandthepopulationofthebondingstateapproachingthisvaluefrombelow.Forthecaseexaminedinthepresentpaper,thepopulationsaremagneticfluxdependentandtheirlimitingvaluesaredeterminedbytheABphase.Moreover,thepopulationoftheantibondingstatecanbelargerthanthepopulationofthebondingstateatappropriatevaluesoftheappliedmagneticfieldandlead-to-leadbias,whichcanleadtothepopulationinversionor,forstrongCoulombrepulsion,tothesituationwhentheantibondingstatebecomesthegroundstateofthesystem.Itshouldbeemphasizedthatthepopulationinversioncanbeachievedonlyforthestronglynonequilibriumsituation.Forexample,atzerobiasthedistributionfunctionsarethesameforallleads,theABphasedependenceiscanceled,andthelevelpopulationsaredeterminedbythisdistributiontakenattheenergyofthecorrespondinglevel.Consequently,thepopulationoftheantibondingstateisalwayslessthanthepopulationofthebondingstate.

Eqs.(4)and(5)weresolvedself-consistentlywiththevoltagedependenciesoflevelpopulationsandenergiesshowninFigure2(a)andFigure2(b),respectively,forφ=π/8,lowtemperatureT=0.2∆,largeCoulombenergyU=8∆,andseparationbetweentheequilibriumchemicalpotentialoftheleads,µ,andtheenergyofthesingledotgroundstate,E0,chosenas7∆.Inthiscase,inequilibriumthebondingstateisbelowtheFermilevelandtheantibondingstateisabovetheFermilevelwithinitialpopulationstobeNB=1andNA=0.Withvoltageincreasing,thechemicalpotentialoftheleftleadpassesthroughtheantibondingstate(modulothermalbroadening)resultinginitspopulation(Figure2(a)).Accordingly,theenergyofthebondingstateincreases(Figure2(b))andwithfurthervoltageincreasingthechemicalpotentialoftherightleadspassesthroughtheenergyofthisstateresultinginitsdepopulationandcorrespondingdecreaseoftheantibondingstateenergy.TheCoulombenergyischosentobesufficientlylarge,sothattheenergyoftheantibond-4

ingstatebecomeslessthantheenergyofthebondingstateand,moreover,lessthanthechemicalpotentialoftherightlead.Consequently,thislevelbecomesnonconductiveanditspopulationincreasesuptoone.Withfurthervoltageincreasingtheantibondingstateremainsthegroundstateofthesystemandbecomesconductiveagain.

Thesepopulationchangesmanifestthemselvesinthecurrent-voltagecharacteristicsofthedouble-dotsystem.Forsymmetriccouplingtotheleadsandlowtemperaturethecurrentthroughthestructureisgivenby

I=

2+cos2φ2−cos2φ

󰀃

󰀃

fL(EA)−

fR1(EA)+fR2(EA)

fL(EB)−

fR1(EB)+fR2(EB)

fortheweakerCoulombenergy(Figure5(b))thesystemcanamplifytheexternalfieldforthevoltageshigherthansomethresholdvalue.ThisamplificationcanbecontrolledbythemagneticfieldascanbeseeninFigure6wheretheabsorbedenergyisplottedasafunctionoftheABphaseφ.

Inconclusion,wehaveexaminedthetransportandmicrowavepropertiesofthedouble-dotstructureconnectedinparalleltothesameterminalfromitsleftsideandhavingthetwodotsconnectedtotheseparateterminalsfromtheirrightside.Inaddition,theleftsideofthestructureisthreadedbyAharonov-Bohmmagneticflux.WehaveshownthatbothlevelpopulationsandelectriccurrentthroughthestructurearefunctionsofABfluxandatappropriatechoiceofparametersboththenegativedifferentialconductivityandthepopulationinversioncanbeachievedwithpossibleamplificationofexternalmicrowavefield.

6

FigureCaptions

Figure1.Schematicofthedouble-dotsystemwithconnectionstothreeterminals.Figure2.(a)Levelpopulationsand(b)energiesasfunctionsoftheappliedvoltagebiasforthecaseofstrongCoulombrepulsion.

Figure3.Current-voltagecharacteristicsofthestructure.

Figure4.(a)Levelpopulationsand(b)energiesasfunctionsoftheappliedvoltagebiasforthecaseofweakCoulombrepulsion.

Figure5.Absorbedresonantmicrowaveenergyasfunctionoftheappliedvoltagebiasfor(a)strongCoulombrepulsionand(b)weakCoulombrepulsion.

Figure6.AbsorbedresonantmicrowaveenergyasfunctionoftheAharonov-Bohmphase.

7

REFERENCES

[1]W.G.vanderWiel,S.DeFranceschi,J.M.Elzerman,T.Fujisawa,S.Tarusha,andL.P.Kouwenhoven,Rev.Mod.Phys.75,1(2003).

[2]D.LossandE.V.Sukhorukov,Phys.Rev.Lett.84,1035(2000).

[3]A.Yu.Smirnov,N.J.M.Horing,andL.G.Mourokh,Appl.Phys.Lett.77,2578(2000);L.G.Mourokh,N.J.M.Horing,andA.Yu.Smirnov,Phys.Rev.B66,085332(2002).[4]H.Qin,A.W.Holleitner,K.Eberl,andR.H.Blick,Phys.Rev.B64,241302(2001);A.W.Holleitner,C.R.Decker,H.Qin,K.Eberl,andR.H.Blick,Phys.Rev.Lett.87,256802(2001);A.W.Holleitner,R.H.Blick,A.K.H¨uttel,K.Eberl,andJ.P.Kotthaus,Science297,70(2002).

[5]D.SaragaandD.Loss,Phys.Rev.Lett.90,166803(2003).

8

Dot 1 Left Lead 2 1st Right Lead Dot 2 2nd Right Lead Aharonov-Bohm magnetic flux

L. G. Mourokh and A. Yu. Smirnov, Figure 1 of 6

(a)

1.00.90.8

NA NB

φ = π/8U = 8∆µ - E0 = 7∆

Populations0.70.60.50.40.30.20.10.0

0

2

4

6

8

10

12

14

Voltage bias (eV/∆)

(b)

98

µL

Energies ((EA,B-E0)/∆)76543210-1-20

2

4

6

8

10

EA EB

φ = π/8U = 8∆µ - E0 = 7∆

12

µR

14

Voltage bias (eV/∆)

L. G. Mourokh and A. Yu. Smirnov, Figure 2(a,b) of 6

0.10

Current (arb. units)0.08

0.06

φ = π/8U = 8∆µ - E0 = 7∆

0.04

0.02

0.00

0

2

4

6

8

10

12

14

Voltage bias (eV/∆)

L. G. Mourokh and A. Yu. Smirnov, Figure 3 of 6

(a)

1.00.90.8

NA NB

Populations0.70.60.50.40.30.20.10.0

0

2

4

6

8

10

φ = π/8U = 2∆µ - E0 = 2∆

Voltage bias (eV/∆)

(b)

3.02.5

EA EB

φ = π/8U = 2∆µ - E0 = 2∆

Energies ((EA,B-E0)/∆)2.01.51.00.50.0-0.5-1.0

0

2

4

6

8

10

Voltage bias (eV/∆)

L. G. Mourokh and A. Yu. Smirnov, Figure 4(a,b) of 6

(a)

10

Absorption (arb. units)8

6

φ = π/8U = 8∆µ - E0 = 7∆

4

2

0

02468101214

Voltage bias (eV/∆)

(b)

4

Absorption (arb. units)3

2

φ = π/8U = 2∆µ - E0 = 2∆

1

0

-10

2

4

6

8

10

Voltage bias (eV/∆)

L. G. Mourokh and A. Yu. Smirnov, Figure 5(a,b) of 6

2.5

Absorption (arb. units)2.0

eV = 8∆U = 2∆µ - E0 = 2∆

1.5

1.0

0.5

0.0

-0.5

0

1

2

3

4

φ/π

L. G. Mourokh and A. Yu. Smirnov, Figure 6 of 6

因篇幅问题不能全部显示,请点此查看更多更全内容