您的当前位置:首页正文

《长方形和正方形的周长》教学设计

2022-08-02 来源:星星旅游

  本节课是在学生学习了长方形和正方形的周长与面积后设计的一节综合实践课。

  一、教学内容:

  探究当长方形周长一定时,面积的变化规律:长方形周长一定,长和宽越接近面积越大,长和宽相等时(即正方形)面积最大。

  二、数学知识背景分析:

  所谓的等周问题:等周定理,又称等周不等式,是一个几何中的不等式定理,说明了欧几里得平面上的封闭图形的周长以及其面积之间的关系。其中的“等周”指的是周界的长度相等。等周定理说明在周界长度相等的封闭几何形状之中,以圆形的面积最大;另一个说法是面积相等的几何形状之中,以圆形的周界长度最小。

  虽然等周定理的结论早已为人所知,但要严格的证明这一点并不容易。首个严谨的数学证明直到19世纪才出现。之后,数学家们陆续给出了不同的证明,其中有不少是非常简单的。

  而将图形锁定在长、正方形上就是我们今天这节课所要研究的问题。而这个问题对应的代数问题即所谓的均值定理或均值不等式:算术平均数大于几何平均数。如果我们设长为a〉0,宽为b〉0,周长C=2(a+b),面积S=ab,我们有当且仅当a=b时,等号成立。

  等价于

  于是当周长C一定时,a+b的和一定,所以当且仅当a=b时,即正方形面积最大,最大面积为

  数学大厦中这么有趣和著名的问题居然出现在小学三年级的数学课本中,想到这些我不禁兴奋起来。作为教师我们怎么能轻易放过这样的数学教学素材,怎么能不让我们的学生亲自体验一下探究数学的乐趣,怎么能不让教师和学生一起来体验数学的美。

  于是我精心设计了这节课,但问题是毕竟面对三年级的学生,讲到什么程度,怎么教,教学目标是什么等一系列问题是我下一步要认真思考的。

  三、学情分析:

  学生已掌握了长正方形的周长和面积计算公式的基础上进行教学的,但对于知识的`灵活运用还有待提高,三年级的学生抽象、概括能力,独立探究规律的能力也有待增强。

  四、课程理念:

  a+b

  2≥ab(a+b2)2≥ab(a+b2)2=(C4)2

  国家对教育改革发展的要求是:要鼓励学生创造性思维、着力提高学生的学习能力、实践能力、创新能力。20xx年的新课程标准将原来的双基变为了四基即:让学生获得基础知识、基本技能、基本数学思想、基本活动经验。四基是双基的继承和超越,基本活动经验获得了与基础知识、基本技能、基本数学思想、同等重要的地位。数学活动经验的积累有助于落实新课程的能力性目标、过程性目标、情感性目标的及对学生应用意识、创性能力的培养。数学活动经验的积累是学生数学素养的重要标志。因此我们要重视数学活动经验的积累。

  五、教学目标:

  1.探究发现长方形周长和面积的变化规律:周长一定,长和宽越接近,面积越大;长和宽相等时,面积最大。

  2.在自主探索、交流、合作等活动过程中,运用画图、列表等方法,渗透有序思考和数形结合思想。积累学生从事探索规律活动的经验。

  3.激发学生学习数学的兴趣,体验探索知识的乐趣,体会数学的应用价值。

  六、基本流程:

  引发思考—发现规律—验证规律—几何解释—应用规律

  七、教学过程:

  (一)故事激趣,以退为进

  导入:我们来先听一个故事,故事的名字是“欧拉智改羊圈”。

  欧拉是著名的数学家,他小时候,要帮助爸爸放羊。羊渐渐越来越多了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,面积正好是(600平方米),围这样一个羊圈,需要用多长的篱笆,(15+15+40+40=110)可爸爸发现他的材料只够围100米的篱笆,不够用。正当父亲感到为难的时候,小欧拉却向父亲说:“我能用100米长的篱笆,围成一个比这个羊圈面积还大的羊圈。”

  提问:你认为小欧拉的说法可行吗?预设1:围成正方形面积大。预设2:围成圆形面积最大。预设3:可以靠墙围面积大。

  出示题目:“用16米的篱笆围成长方形或正方形,可以怎么围,面积是多少平方米?

  引导学生明确问题、分析条件、提出思路、规划方案。

  提问:要围成什么图形?这里的16米是什么意思?怎样围,也就是要确定长方形的什么?

  强调:无论围成的是长方形,还是正方形,周长都是16米。提问:长方形的长和宽怎么确定?

  小结:周长的一半是长和宽的和,因为周长一定,所以长和宽的和也是固定不变的。也就是长和宽的和是一定的。看来,我们只要确定了宽的长度,长也就知道了。

因篇幅问题不能全部显示,请点此查看更多更全内容