教学目标:
1.学生经历发现两位数乘两位数的计算方法的过程,体验计算方法的多样化,会进行两位数乘两位数的笔算。
2.通过小组合作交流,比较各种方法的优点和不足,帮助学生体会优化的策略和思想。
教学过程:
一、创设情境,提出问题
l.出示例1图。(图中增加1盒水彩笔)提问:你能猜测一下大约有多少枝水彩笔吗?
2.学生进行猜测后要求说说怎样猜测的。
3.提问:怎样才能证明你猜测的答案是正确的?(要计算出2412=?)
4.追问:怎么算呢?我们没有现成的办法,你能自己想办法计算2412得多少吗?二、探索尝试,比较并优选算法
1.独立思考,尝试解决问题。(学生用自己的方法去解决2412=?注意帮助有困难的学生。)
2.小组交流、整理。
3.以小组为单位,全班汇报,再汇总不同算法。学生的`算法可能有:
(1)12+12++12=288(24个12相加)
(2)1246=288
(3)1238=288
(4)1220+124=288也有学生用竖式计算
4.方法归类。(共分三类,第一类是连加;第二类是连乘;第三类是把其申一个乘数拆成两数的和或差)
5.发现最佳方法。
(1)出示:2313二请你用自己喜欢的方法计算这道题目。
(2)小组交流,然后选出最简单的方法向全班同学汇报。
(3)提问:为什么不用连加?为什么不用连乘?
(4)引导:在计算两位数乘两位数时,你认为哪一种方法适用的范围比较广?为什么?
6.研究笔算方法。
(1)提问:我们再来看看2412这个乘法的竖式。你能说说每一步的意思吗?(学生进行讨论,然后全班交流。)
(2)根据学生回答,出示每一步竖式表示的意义。
(3)设问:是不是每一道两位数乘两位数都可以用竖式计算呢?计算时你认为应该注意些什么?(体会竖式计算的优点:简便,正确;注意数位对齐。)
三、巩固法则,推广应用
1.完成练一练的3道题目。(学生独立完,再指名板演)
2.练习二第3题。(先填在书上,然后交流)
四、全课总结,交流收获
1.小结:通过本节课的学习,你有什么收获?
2.你能编几道两位数乘两位数的题目,尝试计算一下吗?
因篇幅问题不能全部显示,请点此查看更多更全内容