您的当前位置:首页正文

挤压铸造ALSIMG合金微观特性的拉伸性能

2022-01-18 来源:星星旅游
MaterialsLetters59(2005)894–900

www.elsevier.com/locate/matlet

Microstructurecharacterizationandtensilepropertiesof

squeeze-castAlSiMgalloys

M.T.AbouEl-khair*

NonFerrousLaboratory,CentralMetallurgicalResearchandDevelopmentInstitute(CMRDI),P.O.B.87Helwan,Cairo,Egypt

Received24March2004;receivedinrevisedform20November2004;accepted27November2004

Availableonline10December2004

Abstract

Aresearchprogramwasconductedtostudytheeffectsofsqueezepressure(70,100and160MPa)andheattreatmentT6onthestructure,hardnessandtensilepropertiesofcastAl6Si0.3Mgalloys.Theinfluenceofsqueezepressureonmacro-andmicrostructuresofAl6Si0.3Mgalloyshasbeeninvestigated.Someofcastingsweresolutiontreatedat5408Cforvarioustimesandothersweresubjectedtoagingat1708Caftersolutiontreatment.Theresultsindicatedthatprecipitationoccurredwithinabout30minforbothcastandsqueezecastalloys.Thehardnessbegantoincreaseandmaximumvalueswereobservedafterabout10hforas-castalloy.Increasingofsqueezepressure(70–160MPa)acceleratedstrengthofthealloysfrom8to4h,respectively.Squeezepressuresdecreasedthepercentageofporosityandincreasedthedensity,alsoitdecreasedthegrainsizeofa-AlandmodifiedtheSieutectic.Hardnessandtensilepropertiesincreasedwithbothheattreatmentandincreasingofsqueezepressure.D2004ElsevierB.V.Allrightsreserved.

Keywords:AlSiMg;Squeezecasting;Soundness;Macro-/microstructure;Aging;Tensileproperties

1.Introduction

Theuseoflight-metalcomponentsinvariousapplicationshasincreasedduringthelastdecade,partlyasaresultoftheincreasedamountoflightmetalsbeingusedfortransportationpurposes.Oneadvantageisthatlight-metalcomponentsleadtoanoverallreducedweightand,thus,toreducedenergyconsumption.Anotheradvantage,whichmaybejustasimportantfromanenvironmentalpointofview,isthefactthataluminiumcomponentsmayberecycledwithrelativelowenergydemands.Forsuchpurposes,alloysofthetypeAlSiMgarefoundtogivegoodresultssincetheyshowexcellentcastingcharacteristicsandmechanicalproperties;theadditionofMgmakesthealloysheattreatable[1–5].

*Tel.:+2025010642;fax:+2025010639.E-mailaddress:rucmrdi@rusys.eg.net.

0167-577X/$-seefrontmatterD2004ElsevierB.V.Allrightsreserved.doi:10.1016/j.matlet.2004.11.041

ThemechanicalpropertiesofcastAlSiMgalloysaredeterminedbychemicalcomposition,rateofsolidification,caststructureanditsintegrityandheattreatment.Generally,alloycompositioneffectsareindependentofcastingtechniqueswhereastherateofsolidificationofcaststructure,andheattreatmentproceduresareprocessdependent[6–8].

Also,themechanicalpropertiesofthecastingsareaffectedsignificantlybythemorphologyoftheeutecticSiandporosity.TheporosityisknowntoaffectadverselythemechanicalpropertiesofAlalloys[1,4,9,10].

Inthesqueezecastingprocess,thehighpressureappliedduringsolidificationcaneliminateporositycausedbybothgasandshrinkage,andtheincreasedcoolingratecausedbyimprovedthermalcontactbetweenthecastinganddieresultsintheformationoffinegrainedstructures[10–12].Con-sequently,thesealsoimprovecastingsoundnessandmechanicalproperties.Inthepresentcontribution,aspectsrelatedtothecastingtechniqueandheattreatmentofthecastingareconsidered.

M.T.AbouEl-khair/MaterialsLetters59(2005)894–900

895

Table1

TheDensitymeasurementsandporositypercent

SqueezepressureAscast

70MPa100MPa160MPaTotalporeareasq-m/g2.7830.6980.6590.490BulkDensityg/ml2.58462.67352.67532.69762.6527*2.6894*2.6902*2.6917*Porosity%

2.27

0.71

0.63

0.48

*Archimedesmeasurements.

Thispaperpresentsresultsontheeffectofoptimumprocessconditionsforobtainingsoundcastingsandalsotoexplorethesqueezepressureeffectonmacro-andmicro-structure,soundness,agingcurves,eutecticmorphologyandtensileproperties.

2.Experimentalprocedure

AnAlSialloyofcompositionSi5.9,Fe0.52,Cu0.385,Mg0.333andAlbalancewasusedascastingmaterial.Aftermeltinginanelectricresistancecruciblefurnace,degassingwithpreviouslypurifiedliquidnitrogenwascarriedout.Liquidmetalwithacertainsuperheat(508C)waspouredintothepreheatedtoolsteeldiewithacylindricalcavityofaninternaldiameterof50mm,aheightof100mmandawallthicknessof20mm.

Afterpouringthemeltintothediecavity,pressurizationwasachievedusinga60Thydraulicpress.Thedelaytime,whichisnecessaryforthepressurizationofthemeltafterpouringwas120s.Thedietemperaturewas2508Candthepouringtemperaturewas7508Candthesqueezepressureswere70,100and160MPa.

Thedensitiesofas-castandsqueezespecimensweredeterminedusingArchimedes’principleandalsobyusingporesizerdevicemicromeritiesmodel9310toquantifytheporositypercent.

Thesqueezecastspecimenswerecutintotwopartsinthelongitudinaldirection,andonepartwaspreparedforobservationofmacrostructurebypolishingandetchingwithTurker’sreagent.ThenthecastingwasformedastensilespecimensofA-370standard.

Someofthespecimensweresolutiontreatedat5408Cfor32h,theotherforhardnessandtensiletestsweresubjectedtoT6condition(solutiontreatedat5408Cfor8h,quenchedinwaterat258Candagedat1708Cfordifferenttimestill36h).

Theas-castandsolution-treatedspecimenswerepol-ishedandetched,andthemicrostructureswereexaminedusingopticalmicroscopy.ThetensilepropertieswereevaluatedwiththetestspecimensfabricatedbyScHE-MATZUEDCStestingmachineunderthecross-headspeedof0.3mm/minandfracturesurfacesofthetestspecimenswereexaminedwithJEOLscanningelectronmicroscope.

3.Soundness

ThedensitymeasuredbyArchimedes’principleandalsothedensitiesmeasuredbytheporesizedevicearetabulatedinTable1.

Fromtheresultsbothmeasurementsshowthatwithincreasingthesqueezepressure,thedensityincreases.

Fig.1.Macrostructureofsqueezecastalloys(a)70(b)100and(c)160MPa.1X.

896M.T.AbouEl-khair/MaterialsLetters59(2005)894–900

Densityincreasesmarkedlyfromas-castto70MPa,andtheincreaseisgradualthereafterfrom100to160MPa.Also,theporeareaandporositypercentdecrease.Increasingofpressurefrom0to70MPadecreasestheporosityabout69%whileitis32%from70to160MPa.

Asthesqueezecastingprocessdoesnotmakeuseoffeedermaterial,thecavityresultingfrommetalshrinkagemustbecompensatedbytheapplicationofpressure.Hashemietal.[11]statedthatthedensitymeasurementsindicatedthatthereisacriticalpressurethatcanbeachieved.Allsqueezedcastspecimensatapressureabove50MPawerefullydense.

4.Macrostructure

Fig.1showsthemacrostructuralcharacterizationcon-ductedonthesqueezecastalloysat70,100and160MPa,respectively.Itrevealednoevidenceofblowholesormacropores.Themacrostructureisanequiaxisedstructureandthegrainsizesdecreasewithincreaseofsqueezepressurefrom70to160MPa.

andheattreatmentonthemechanicalpropertiesofAl6Si0.3Mgalloy.

Themicrostructureofas-castalloyisshowninFig.2awhichshowstheexistenceofaciculareutecticSisurroundedbya-Aldendrites.Therelativelycoarsea-Aldendriteofabout150AmsizetogetherwiththecoarseSiparticleswereobservedinthegravitycastmaterial.Thiswasattributedtotheslowsolidificationrateduringcasting.Ontheotherhand,inFig.2b,theapplicationofpressure70MParesultsinastructureofa-Alofabout50AmsizewithfineeutecticSi.Increasingtheappliedpressurefrom100to160MPareducesthegrainsizeoftheprimaryphasefrom30to20Am(Fig.2candd).Also,increasingtheappliedpressureleadstotheformationofaveryfineeutecticSi.However,applicationofpressuredoesnotaffecttheeutecticSimorphology.

Onthesolidificationunderpressure,thefollowingchangesinmicrostructurewereobservedFig.2:1.2.3.4.

increasinginthevolumefractionoftheAl-richa-phasewithincreaseinpressure

decreaseinthesizeoftheprimaryAl-richdendritesdecreaseinthevolumefractionoftheeutecticconsiderablerefinementoftheSioftheeutectic

5.Microstructure

Themajorpurposeofthisworkistoclarify,throughmicrostructuralstudies,theinfluenceofsqueezepressure

Themicrostructuresofas-castandsqueezecastsolutiontreatmentalloysareshowninFig.3.Themicrostructureinthesolutiontreatmentconditionconsistsofa-Alcells

Fig.2.Microstructureof(a)as-castandsqueezecastalloysat(b)70,(c)100and(d)160MPa.

M.T.AbouEl-khair/MaterialsLetters59(2005)894–900897

Fig.3.Microstructureofsolution-treatedalloys(a)as-cast(b)squeezecastat70MPa.

boundedbyirregularlyshapedSiparticles.Eutecticisacicularandrandomlydistributed.

ThetypicaldistributionofSiparticlesaftersolutiontreatmentisshowninFig.3.ForsqueezecastalloytheSiparticleshavespheroidizedandcoarsenedtosomeextent,ascomparedwithas-castalloy.Mostofthemaremoreorlessspherical.Someparticlesstillhavealongitudinalshape.Initially,Siparticlesarebrokendownintosmallerfragmentsandaregraduallyspheroidized.Prolongedsolutiontreat-mentleadstocoarseningoftheparticles.Bothspheroidiza-tionandcoarseningaresurfaceenergy-driven,i.e.,thesystemtriestoreduceexcesssurfaceareatotheminimumpossible[13,14].

6.Agingbehavior

Theagingcurvesatroomtemperaturehardnessofas-castandsqueezedcastalloysareshowninFig.4.

Thecurvesbehaveinasimilartrend.Theyrevealthattheprecipitation-strengtheningeffectbecomepro-nouncedafter30minofagingandreachesapeakvalueat10,8,6and4hforas-castandsqueezecast(70–160MPa)alloys,respectively.Littledifferenceintimetopeakhardnesswasobservedfordifferentconditions.

ThealloysarestrengthenedbytheprecipitationofanintermetalliccompoundMg2Siduringtheagingtreatment.

898M.T.AbouEl-khair/MaterialsLetters59(2005)894–900

Fig.4.Theagingcurvesofas-castandsqueezecastalloysatdifferentsqueezepressuresat1708C.

Thisenhancementofstrengthwasobtainedalsowithincreasingthesqueezepressurefrom70to160MPa.

IncreasingthepressureincreasestheSisolubilitysothestrengthincreasedwithincreasingthepressure[10].BecauseofthepresenceofexcessSiinthesolidsolution,precipitationofMg2Sioccursmuchfasterinsqueezedalloys[6].

ThesolutiontreatmentstageoftheT6heattreatmentperformsseveralimportantfunctions:dissolutionofMg2Siphase;homogenizationofthesolidsolution;andfragmen-tation,spherodizationandcoarseningoftheeutecticsilicon.DissolutionofMg2Siandhomogenizationofthematrixoccurswithin15mininA356alloyat5408C[1].

Thechangestoeutecticsiliconmorphologyaregenerallyslower,takinguptoseveralhours,anddependonparameterssuchassolutiontemperatureandoriginalparticlesize/shapewhichinturnaredeterminedbysolidificationconditions,grainsizeandeutecticmodifi-cation[9].

7.Tensileproperties

Table2showsthevaluesofultimatetensilestrength(UTS),yieldstrength(YS)andelongationpercent(El%)ofthenon-heat-treated,solution-treatedandagedalloysatdifferentsqueezepressures.FromthetableUTSandYSshowanincreasingtrendwithincreasingofsqueezepressurefrom70to160MPaforallalloys.

AgedalloyshavethelargestvalueofUTSandYS,thevaluesofsolution-treatedalloysarelesswhilethevaluesofnontreatedalloysarethelowest.

TheeutecticSiinas-castalloyispresentascoarse,acicularneedleswhichactasstressraisers,andconse-quently,thematerialiseasyfractured.TheheattreatmentmodifiesthemorphologyoftheSifromaciculartospherodizedshape,therebyimprovingthemechanicalproperties[5,9,14].

Theenhancementofstrengthpropertiesobtainedduringagingtreatmentisprimarilyowingtothemetastablephasefromthesupersaturatedsolution[8].Whenboththesolutionandagingtreatmenteffectsonthetensilepropertiesareconsidered,thepropertieswouldshowanincreaseinstrengthanddecreaseinductility.Thepresentresultsthereforeagreequitewellwiththeresultsreportedinliterature.

TheincreaseofstrengthwithincreasingsqueezepressureisduetotheincreasedsolubilityofSiandthevirtualeliminationofshrinkageand/orgasvoidscouldallcontributetowardstheobservedimprovementsinstrengthofthealloys[6,10,11].

Theelongationpercentincreaseswithincreasingsqueezepressure,thevaluesofsolution-treatedalloysarethelargestones.Theimprovementsinelongationvaluesaremostlikelytobeduetotheincreasedvolumefractionoftheprimaryaphaseandimprovedsoundnessofthealloys.TheeutecticSimorphologyplaysavitalroleindeterminingthemechanicalproperties.Particlesize,shapeandspacingarefactorsthatcharacterizeSimorphology.Undernormalcoolingconditions,Siparticlesarepresentascoarseacicularneedles.Theneedlesactascrackinitiatorsandlowermechanicalpropertiesappreciably.TheSiparticlecharacteristicscanbealteredbysubjectingthecastingtoahightemperatureheattreatmentforlongperiods.Therefore,forprolongedsolutiontreatment,theobservedchangeintensilepropertiesareattributedtochangeinSiparticlecharacteristic[4,9,10].

8.Tensilefracturesurface

Fig.5revealstheSEMmicrographsofthetypicalfracturesurfacesofnontreatedandagedtensilespecimens.Amixedmodeofbrittlecleavageandductilefracturewithdimpleswasobservedatbothheat-treatedandnontreatedalloys.Applicationofsqueezepressuresimprovethefracturesurfaces.Itindicatesamoreductilefailuremode.

Table2

Mechanicalproperties(UTS,YSandEl.%)ofinvestigatedalloys

PressureMPa

EffectofheattreatmentNontreatedSolutiontreatmentAgingUTSMPa

Ascast10314715070128173198100131185200160132190208YSMPa

Ascast64114827087136136100103139165160114140190EI.%

Ascast2.543.57041351005.5146160

6.5

15

8

M.T.AbouEl-khair/MaterialsLetters59(2005)894–900899

Fig.5.SEMmicrographsoftensilefractureof(a)as-castandsqueezecastalloysat(b)70,(c)100and(d)160MPa.

Thefracturebehaviorofthealloysisaffectedbythesizeofa-particlesandSimorphology[15].5.6.

9.Conclusions1.2.3.4.

Bothheattreatmentandsqueezecastingincreasethestrengthoftheinvestigatedalloys.

Increasingofsqueezepressuredecreasesthea-AlgrainsizeandmodifiedtheeutecticSi.

Increasingofsqueezepressure(70–160)MPadecreasestheporosityandimprovesthetensileproperties.

Squeezepressureaccelerateshardnesspeakfrom8to4h.

AgingenhancesUTSandYSandreducestheductility.TheSiparticlesstarttofragmentizeandspheroidizealmostimmediatelywithsolutiontreatment.Thisleadstopronounceimprovementinmechanicalpropertiesoftreatedalloys.

References

[1]L.Pedersen,L.Arnberg,Metall.Mater.Trans.32A(2001(March))

525.

[2]J.K.Lee,M.H.Kim,S.H.Choi,63rdWorldFoundryCongress,12–18

Sept.Budapest,Hungary,no.351998.

[3]J.A.Taylor,D.H.StJohn,J.Barresi,M.J.Couper,Mater.Sci.Forum

331–337(2000)277.

900M.T.AbouEl-khair/MaterialsLetters59(2005)894–900

[10]S.Murali,A.Trivedi,K.s.Shamanna,K.S.S.Murthy,J.Mater.Eng.

Perf.5(4)(1996(August))462.

[11]H.R.Hashemi,H.Ashoori,P.Davami,Mater.Sci.Technol.17(2001

(June))639.

[12]M.T.AbouEl-khair,PhDFacultyofEngineering,CairoUnversity,

Egypt,1998,pp.86–88.

[13]P.A.Rometsch,L.Arnberg,D.L.Zhang,Int.J.CastMetalsRes.12

(1999)1.

[14]D.Apelian,S.Shivkumar,AFSTrans.97(1989)727.

[15]P.S.Wang,S.L.Lee,J.C.Lin,J.Mater.Res.15(9)(2000

(September))2027.

[4]Y.H.Tan,S.L.Lee,Y.L.Lin,Metall.Mater.Trans.26A(1995(May))

1195.

[5]M.Ravi,U.T.S.Pillai,B.C.Pai,A.D.Damodaran,E.S.Dwarakadasa,

Metal.Mater.Trans.27A(1996(May))1283.

[6]S.Shivkumar,C.Keller,D.Apelian,AFSTrans.179(1990)

905.

[7]M.Tiryakioglu,J.Campbell,J.T.Staley,Mater.Sci.Forum331–337

(2000)295.

[8]L.Siaminwe,A.J.Clegg,Mater.Sci.Technol.15(1999(July))B.812.[9]J.W.Yeh,W.P.Liu,Metall.Mater.Trans.27A(1996(November))

3558.

因篇幅问题不能全部显示,请点此查看更多更全内容