您的当前位置:首页正文

关于中国铁路通信信号技术的发展方向的研究

2022-04-07 来源:星星旅游
关于中国铁路通信信号技术的发展方向的研究

铁路由于先天的综合优势,全天候、占地少、运量大、能耗低、速度快、安全性好、性价比高,必然成为国家综合交通运输体系中的骨干。在一个相当长的时期内,不断扩大路网规模、优化路网结构和提高路网质量,逐步建成四通八达、安全可靠、方便快捷的现代化铁路网是中国一项基本政策。随着国家能源与环境保护政策的完善,铁路作为国家基础设施必将以新的现代化面貌,获得更加迅速的发展。在中国经济自然环境下,尤其如此。

铁路通信信号,自中国铁路1825年诞生以来,就与铁路运输安全生产密不可分,并逐步从以人(车务人)保安全迅速发展成以设备保安全、以系统保安全的专业部门。并随着社会科学技术发展和铁路提速、高速、重载和密度的加大而不断发展完善,为铁路现代化提供了重要支撑,是客运高速和货运重载的重要保证。

传统铁路通信信号的主要作用

传统的铁路通信主要是两大业务,一是铁路电报,包括预确报;二是铁路电话,包括调度指挥。其面向铁路运输一是通信联系、沟通情况、电话指挥,二是提供列车编组信息,以便沿线和编组站调车作业。

传统的铁路信号主要是“信联闭”三大功能,均是从车务行车作业中分离出来的业务。主要是通过信号设备为行车提供正确的信号显示,确保进路联锁正确,实现两站之间的半自动或自动闭塞。

铁路通信信号开始只是提供安全保证,随着电气设备的引入,逐步实现了电气集中与自动闭塞。电气集中使得进路办理自动化,自动闭塞使得一个站间可以同时运行多列列车(初期铁路列车要站站停车办理闭塞),调度集中可以使得调度员远程遥控指挥列车运行,逐步向行车指挥自动化、提高接发车作业效率和通过能力、减轻人员劳动强度等方面发展。也就是说,铁路通信信号不仅仅是提供安全保证,而是在保证安全的基础上实现铁路运输的接发车作业和区间运行自动化,大大提高了通过速度与列车密度。

现代化铁路铁路通信信号的发展方向

现代化铁路的实现,一是要有足够发达的铁路网,消除铁路对国民经济的瓶颈制约;二是大力发展和建设电气化铁路,提高电气化铁路的比重;三是建设高速铁路网并在繁忙线路实现客货分运;四是货运铁路重载通道化;五是探索城市轨道交通的发展途径。目标就是旅客运输高速化、舒适化、快捷化;货物运输重载化、专业化、便捷化;全面满足国民经济对铁路运输的需求。从2008年起中国铁路将进入

高速铁路时代,通信信号是高速铁路四大核心技术的重要组成部分,直接关系到高速铁路的建设和安全运行,正是电务发展的黄金机遇期。我们一定要珍惜这来之不易的大好机遇,关心客运专线建设,为中国高速铁路电务技术装备建设与发展作出贡献。

铁路的发展需求决定了铁路通信信号的发展方向。铁路的大发展给铁路通信信号提出了挑战,同时也为铁路通信信号提供了非常良好的发展机遇。随着高速铁路的兴起,对铁路通信信号在安全上和功能上提出了新的更高的要求。要求铁路信号要广泛运用3C(计算机、通信、控制)技术,迅速实现5个转变,即由地面固定信号控制到列车车载设备控制的转变;由开环控制到闭环控制的转变;由分散孤立的控制到成区段集中控制的转变;由信联闭简单控制到速度综合控制的转变;由广播式简单通信到点对点和点对多点的多功能移动通信转变。

铁路通信的发展方向

(1)对传统的铁路传输网、接入网、电话交换网、调度通信网进行系统优化。

与中长期铁路规划相匹配,根据铁路信息化规划和新业务要求,按照数字化、网络化、宽带化、综合化原则,积极促进铁路通信

网的优化和建设,提高适应铁路信息化的能力,推动新型通信业务在铁路的应用,为运输生产提供现代化信息通信手段。一是综合数据通信网,核心内容就是建设以IP数据网为代表的信息化基础网络,形成铁路自己的信息化网络平台。与此同时扩大会议电视网,会议终端延伸到基层站段;二是进行干线调度和区段调度的联网,力争全面实现调度通信数字化、业务综合化。将逐步推广大容量数字调度通信交换机(2000-4000线)和触摸屏调度台,进一步提高调度通信服务质量。三是对无线列调区间设备实施远程监控,提高无线通信系统区间中继设施的可靠性,推广采用具有远程监控能力的光纤直放技术,研究综合使用区间中继设备提供多业务的技术装备。四是适应机车交路的调整,逐步统一长大干线的既有无线列调系统使用频率,研究地区的频率规划方案,做到点线结合,既要减少司机的频率转换操作,又要优化系统的使用频率,减少或避免列车运行途中的频率或制式转换。五是适应铁路客货运营销的需要,建立铁路客运、货运、公安等部门面向社会综合使用的统一号码通信接入平台。

(2)以GSM-R为龙头,全面推进铁路通信装备的技术进步。

围绕客专铁路建设重点抓好GSM-R移动通信网建设。这里分为两大部分,一是GSM-R核心网整体布局与建设,二是沿线无线网络建设。GSM-R初期在应用上有两种情况,一是参与列车运行控制,如青藏线格拉段、大秦线以及实施中的武广客专;二是不参与列车运

行控制,如胶济线、京津城际,只为车地、人员提供一种移动通信手段,取代并增强以往的无线列调通信系统。

(3)满足铁路客运服务和安全监控需要,建设综合视频监控技术平台。

应用对象主要四个方面,一是重点线路设备监控,如青藏线格拉段综合视频监控系统;二是客运车站重点区域监控,如动车组站台、候车区监控;三是编组站货运装载监控;四是关键安全设备监控。在具体实施上,规划建设铁路局和铁道部监控中心,调整视频监控网络结构,统一IP地址,形成铁路综合视频监控网络的基本框架,目标是建设一个铁路共享一个视频网络平台,为各类动态图像传送业务提供通信平台。

(4)建设应急救援指挥通信系统。

结合客运专线建设,建成北京、上海等铁路局的应急救援指挥中心应急通信系统,实现紧急事件指挥的现场话音、图像、数据的接入和传送功能,并能与综合视频监控系统、防灾安全监控系统互联,实现平时监控与应急通信的结合,实现资源共享最大化。

铁路信号的发展方向

(1)列控系统(CTCS)方面。中国铁路列控系统技术体系的宏观目标要求,一是适应中国既有信号装备现状;二是实现路网之间互连互通;三是满足最高速度160~350km/h列控要求。

CTCS分为5级,面向ATP技术层次分为三级:面向既有线提速即160~200km/h和客货共线新建铁路即200~250km/h的CTCS-2级,面向高速铁路即300~350km/h的CTCS-3级,面向移动闭塞的CTCS-4级。

其主要设备分为地面、车载设备两大部分:地面在ZPW-2000自闭的基础上,通过增设车站列控中心、RBC以及点式应答器(含LEU),满足车载设备所需要的移动授权和线路数据信息,以实现目标距离控制模式;车载设备由安全计算机、轨道信息接收单元(STM/TCR)、应答器信息接收单元(BTM)、人机界面(DMI)、速度传感器、信息接收天线等组成,通过接收轨道电路和应答器信息,生成速度和目标距离模式曲线,控制列车安全运行;临时限速是CTCS的重要内容,规定了限制速度的速度档和长度档,可在调度中心由调度员设置;为实现路网互联互通,在不同CTCS级别转换处设置具有预告、执行功能的级间转换应答器,实现级间自动转换。CTCS列控技术体系,技术标准、功能需求、技术平台基本统一,满足动车组在任何交路的跨线运行。

(2)调度指挥方面。TDCS要实现全路全覆盖;到2020年,繁忙干线、煤运通道基本实现CTC;全路行车调度指挥基本实现自动化。TDCS方面,已初步形成了覆盖全路70条干线的调度指挥网,为调度指挥的现代化奠定了重要基础。今后主要是解决70条干线以外的172条支线的TDCS建设任务,以实现全路全覆盖。

(3)闭塞与机车信号方面。一是伴随中东部电气化、提速与扩能改造、设备大修等工程,逐步淘汰落后制式自闭设备;二是对ZPW-2000进行高可靠性和可维护性再设计,并以其为基本制式,逐步统一我国铁路自动闭塞制式,新上自动闭塞,干线通过能力不得低于6分钟;三是实现中国机车信号车载设备JT-C(2000)型的全部升级换代,机车信号实现全路通用;四是半自动闭塞在加装区间检查的基础上实现自动站间闭塞。

(4)联锁设备方面。一是计算机联锁实现操控界面,互联接口协议,机柜尺寸,外观形式的全路统一;二是进一步开发计算机联锁在故障容错、安全保证、系统维护方面的智能化功能,在可用度上达到国际水平;三是今后新上计算机联锁,120km/h以上主要干线以2×2取2或3取2等为主,限制双机热备型计算机联锁和6502继电联锁的发展;四是结合运输情况,逐点试验推广区域联锁和全电子联锁。

(5)驼峰编解控制方面。一是路网和区域性编组站,以发展信息化驼峰综合自动化设备为主;二是地区和中小能力驼峰,有条件时也应发展信息化驼峰自动化设备;三是研究制造高精度的测速、测长、测重设备。

(6)基础设备方面。一是新开发电子设备和器材必须具备智能诊断、运行日志功能,具备信息联网功能,配置实现冗余化;二是室外通用器材在标准化的基础上具备防盗防破坏功能,高质量高可靠,寿命期内做到少维修或无维修;三是新建、改造工程统筹考虑雷电和电磁兼容综合防护,实现分区分级综合防护;四是电缆径路实现结构化设计;五是信号电源统一标准,进一步提高可靠性和可用度,试验和推广远动技术。

铁道部《铁路主要技术政策》明确指出:铁路信号与通信的技术发展方向是数字化、网络化、智能化、综合化。所以铁路通信信号技术的发展必然是和计算机技术、信息技术、网络通信技术紧密相关,相互交融,GPS卫星定位技术、GIS电子地图技术等也必将引入现代铁路通信信号。

因篇幅问题不能全部显示,请点此查看更多更全内容