您的当前位置:首页正文

最小割集、径集

2022-09-13 来源:星星旅游


相关概念

割集——也叫做截集或截止集,它是导致顶上事件发生的基本事件的集合。也就是说事故树中一组基本事件的发生,能够造成顶上事件发生,这组基本事件就叫割集。引起顶上事件发生的基本事件的最低限度的集合叫最小割集。

径集——也叫通集或导通集,即如果事故树中某些基本事件不发生,顶上事件就不发生。那么,这些基本事件的集合称为径集。不引起顶上事件发生的最低限度的基本事件的集合叫最小径集。

TOP

最小割集求解方法

行列法 结构法

布尔代数化简法 行列法

行列法是1972年福塞尔提出的方法,所以也称其为福塞尔法。其理论依据是:“与门”使割集容量增加,而不增加割集的数量;“或门”使割集的数量增加,而不增加割集的容量。这种方法是从顶上事件开始,用下一层事件代替上一层事件,把“与门”连接的事件,按行横向排列;把“或门”连接的事件,按列纵横向摆开。这样,逐层向下,直至各基本事件,列出若干行,最后利用布尔代数化简。化简结果,就得出若干最小割集。

为了说明这种计算方法,我们以图4—25所示的事故树为例,求其最小割集。

事故树示意图

我们看到,顶上事件T与中间事件A1、A2是用“或门”连接的,所以,应当成列摆开,即

A1、A2与下一层事件B1、B2、X1、X2、X4的连结均为“与门”,所以成行排列:

下面依此类推:

整理上式得:

下面对这四组集合用布尔代数化简,根据A·A=A,则X1·X1

=X1,X4·X4=X4,即

又根据A+A·B=A,则X1·X2+X1·X2·X3=X1·X2,即

于是,就得到三个最小割集{X1,X2},{ X4,X5},{ X4,按最小割集化简后的事故树,如图4-26所示:

事故树等效图

TOP

X6}。

结构法

这种方法的理论根据是:事故树的结构完全可以用最小割集来表示。

下面再来分析图4-25事故树示意图: A1∪A2=X1·B1·X2∪X4·B2

=X1·(X1∪X3)·X2∪X4·(C∪X6)

=X1·X2∪X1·X3·X2∪X4·(X4·X5∪X6) =X1·X2∪X1·X2·X3∪X4·X4·X5∪X4·X6 =X1·X2∪X1·X2·X3∪X4·X5∪X4·X6 =X1·X2∪X4·X5∪X4·X6

这样,得到的三个最小割集{ X1,X2}、{X4,X5}、{X4,X6}完全与上例用行列法得到的结果一致。说明这种方法是正确的。

TOP

布尔代数化简法

这种方法的理论依据是:上述结构法完全和布尔代数化简事故树法相似,所不同的只是“∪”与“+”的问题。实质上,布尔代数化简法中的“+”和结构式中的“∪”是一致的。这样,用布尔代数化简法,最后求出的若干事件逻辑积的逻辑和,其中,每个逻辑积就是最小割集。现在还以图4-25为例,进行化简。

T=A1+A2=X1·B1·X2+X4·B2

=X1·(X1+X3)·X2+X4·(C+X6)

=X1·X1·X2+X1·X3·X2+X4·(X4·X5+X6) =X1·X2+X1·X2·X3+X4·X4·X5+X4·X6 =X1·X2+X1·X2·X3+X4·X5+X4·X6 =X1·X2+X4·X5+X4·X6

所得的三个最小割集{ X1,X2}、{X4,X5}、{X4,X6}与第一、第二种算法的结果相同。

总的来说,三种求法都可应用,而以第三种算法最为简单,较为普遍采用

最小径集求法

求最小径集是利用它与最小割集的对偶性,首先作出与事故树对偶的成功树,就是把原来事故树的“与门”换成“或门”,“或门”换“与门”,各类事件发生换成不发生。然后,利用上节所述方法,求出成功树的最小割集经对偶变换后就是事故树的最小径集。图4-27给出了两种常用的转换方法。

与事故树对偶的成功树的转换关系图

为什么要这样转换呢?因为,对于“与门”连接输入事件和输出事件的情况,只要有一个事件不发生,输出事件就可以不发生,所以,在成功树中换用“或门”连接输入事件和输出事件;而对于“或门”连接的输入事件和输出事件的情况,则必须所有输入事件均不发生,输出事件才不发生,所以,在成功树中换用“与门”连接输入事件和输出事件。例如图4-27所示,其中:T’、X1’、X2’表示事件T,X1,X2不发生。

例如,与图4-25事故树对偶的成功树,如图4-28所示。

事故树对偶的成功树图

用T’、A1’、A2’、B1’、B2’、C’、X1’、X2’、X3’、X4’、X5’、X6’分别表示各事件T、A1、A2、B1、B2、C、X1、X2、X3、X4、X5、X6不发生。

用求最小割集的第三种方法,即用布尔代数化简法,求最小径集: T’=A1’· A2’

=(X1’+B1’+X2’)·(X4’+B2’)

= (X1’+X1’· X3’+X2’)·(X4’+C’·X6’) =(X1’+X2’)·[X4’+( X4’+X5’)·X6’]

=(X1’+X2’)·(X4’+X4’· X6’+X5’· X6’) =(X1’+X2’)·(X4’+X5’· X6’)

=X1’· X4’+X1’· X5’· X6’+X2’· X4’+

X2’· X5’· X6’

这样,就得到成功树的四个最小割集,经对偶变换就是事故树的四个最小径集,即

T=(X1+X4) ·( X1+X5+X6) ·( X2+X4) ·( X2+X5+X6)

每一个逻辑和就是一个最小径集,则得到事故树的四个最小径集为 {X1,X4},{X2,X4},{ X1,X5,X6},{X2,X5,X6}

同样,也可以用最小径集表示事故树,如图4—29所示。其中P1,P2,P3,P4分别表示四个最小径集。

(注:范文素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注。)

因篇幅问题不能全部显示,请点此查看更多更全内容