★新课标要求
(一)知识与技能
1.认识弹性碰撞与非弹性碰撞,认识对心碰撞与非对心碰撞 2.了解微粒的散射 (二)过程与方法
通过体会碰撞中动量守恒、机械能守恒与否,体会动量守恒定律、机械能守恒定律的应用。
(三)情感、态度与价值观
感受不同碰撞的区别,培养学生勇于探索的精神。 ★教学重点
用动量守恒定律、机械能守恒定律讨论碰撞问题 ★教学难点
对各种碰撞问题的理解. ★教学方法
教师启发、引导,学生讨论、交流。 ★教学用具:
投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课
碰撞过程是物体之间相互作用时间非常短暂的一种特殊过程,因而碰撞具有如下特点: 1.碰撞过程中动量守恒.
提问:守恒的原因是什么?(因相互作用时间短暂,因此一般满足F内>>F外的条件) 2.碰撞过程中,物体没有宏观的位移,但每个物体的速度可在短暂的时间内发生改变. 3.碰撞过程中,系统的总动能只能不变或减少,不可能增加.
提问:碰撞中,总动能减少最多的情况是什么?(在发生完全非弹性碰撞时总动能减少最多)
熟练掌握碰撞的特点,并解决实际的物理问题,是学习动量守恒定律的基本要求. (二)进行新课
1.展示投影片1,内容如下:
如图所示,质量为M的重锤自h高度由静止开始下落,砸到质量为m的木楔上没有弹起,二者一起向下运动.设地层给它们的平均阻力为F,
则木楔可进入的深度L是多少?
组织学生认真读题,并给三分钟时间思考.
(1)提问学生解题方法,可能出现的错误是:认为过程中只有地层阻力F做负功使机械能损失,因而解之为
Mg(h+L)+mgL-FL=0.
将此结论写在黑板上,然后再组织学生分析物理过程.
(2)引导学生回答并归纳:第一阶段,M做自由落体运动机械能守恒.m不动,直到M开始接触m为止.再下面一个阶段,M与m以共同速度开始向地层内运动.阻力F做负功,系统机械能损失.
提问:第一阶段结束时,M有速度,vM2gh,而m速度为零。下一阶段开始时,
M与m就具有共同速度,即m的速度不为零了,这种变化是如何实现的呢?
引导学生分析出来,在上述前后两个阶段中间,还有一个短暂的阶段,在这个阶段中,M和m发生了完全非弹性碰撞,这个阶段中,机械能(动能)是有损失的.
(3)让学生独立地写出完整的方程组. 第一阶段,对重锤有:
Mgh1Mv2 2第二阶段,对重锤及木楔有 Mv+0=(M+m)v. 第三阶段,对重锤及木楔有
1(Mm)hLFL0(Mm)v2
2(4)小结:在这类问题中,没有出现碰撞两个字,碰撞过程是隐含在整个物理过程之中的,在做题中,要认真分析物理过程,发掘隐含的碰撞问题.
2.展示投影片2,其内容如下:
如图所示,在光滑水平地面上,质量为M的滑块上用轻杆及轻绳悬吊质量为m的小球,此装置一起以速度v0向右滑动.另一质量也为M的滑块静止于上述装置的右侧.当两滑块相撞后,便粘在一起向右运动,则小球此时的运动速度是多少?
组织学生认真读题,并给三分钟思考时间.
(1)提问学生解答方案,可能出现的错误有:在碰撞过程中水平动量守恒,设碰后共同速度为v,则有
(M+m)v0+0=(2M+m)v. 解得,小球速度 vMmv0
2Mm(2)教师明确表示此种解法是错误的,提醒学生注意碰撞的特点:即宏观没有位移,速度发生变化,然后要求学生们寻找错误的原因.
(3)总结归纳学生的解答,明确以下的研究方法:
①碰撞之前滑块与小球做匀速直线运动,悬线处于竖直方向.
②两个滑块碰撞时间极其短暂,碰撞前、后瞬间相比,滑块及小球的宏观位置都没有发生改变,因此悬线仍保持竖直方向.
③碰撞前后悬线都保持竖直方向,因此碰撞过程中,悬线不可能给小球以水平方向的作用力,因此小球的水平速度不变.
④结论是:小球未参与滑块之间的完全非弹性碰撞,小球的速度保持为v0.
(4)小结:由于碰撞中宏观无位移,所以在有些问题中,不是所有物体都参与了碰撞过程,在遇到具体问题时一定要注意分析与区别.
3.展示投影片3,其内容如下:
在光滑水平面上,有A、B两个小球向右沿同一直线运动,取向右为正,两球的动量分别是pA=5kgm/s,pB=7kgm/s,如图所示.若能发生正碰,则碰后两球的动量增量△pA、△pB可能是 ( )
A.△pA=-3kgm/s;△pB =3kgm/s B.△pA=3kgm/s;△pB =3kgm/s C.△pA=-10kgm/s;△pB =10kgm/s D.△pA=3kgm/s;△pB =-3kgm/s 组织学生认真审题.
(1)提问:解决此类问题的依据是什么? 在学生回答的基础上总结归纳为:
①系统动量守恒;②系统的总动能不能增加;③系统总能量的减少量不能大于发生完全非弹性碰撞时的能量减少量;④碰撞中每个物体动量的增量方向一定与受力方向相同;⑤如碰撞后向同方向运动,则后面物体的速度不能大于前面物体的速度.
(2)提问:题目仅给出两球的动量,如何比较碰撞过程中的能量变化?
p2帮助学生回忆Ek的关系。
2m(3)提问:题目没有直接给出两球的质量关系,如何找到质量关系? 要求学生认真读题,挖掘隐含的质量关系,即A追上B并相碰撞, 所以,vAvB,即
m557,A
mB7mAmB(4)最后得到正确答案为A. 4.展示投影片4,其内容如下:
如图所示,质量为m的小球被长为L的轻绳拴住,轻绳的一端固定在O点,将小球拉到绳子拉直并与水平面成θ角的位置上,将小球由静止释放,则小球经过最低点时的即时速度是多大?
组织学生认真读题,并给三分钟思考时间.
(1)提问学生解答方法,可能出现的错误有:认为轻绳的拉力不做功,因此过程中机械能守恒,以最低点为重力势能的零点,有
mgL(1sin)得v12mv 22gL(1sin)
(2)引导学生分析物理过程.
第一阶段,小球做自由落体运动,直到轻绳位于水平面以下,与水平面成θ角的位置处为止.在这一阶段,小球只受重力作用,机械能守恒成立.
下一阶段,轻绳绷直,拉住小球做竖直面上的圆周运动,直到小球来到最低点,在此过程中,轻绳拉力不做功,机械能守恒成立.
提问:在第一阶段终止的时刻,小球的瞬时速度是什么方向?在下一阶段初始的时刻,小球的瞬时速度是什么方向?
在学生找到这两个速度方向的不同后,要求学生解释其原因,总结归纳学生的解释,明确以下观点:
在第一阶段终止时刻,小球的速度竖直向下,既有沿下一步圆周运动轨道切线方向(即与轻绳相垂直的方向)的分量,又有沿轨道半径方向(即沿轻绳方向)的分量.在轻绳绷直的一瞬间,轻绳给小球一个很大的冲量,使小球沿绳方向的动量减小到零,此过程很类似于悬挂轻绳的物体(例如天花板)与小球在沿绳的方向上发生了完全非弹性碰撞,由于天花板的质量无限大(相对小球),因此碰后共同速度趋向于零.在这个过程中,小球沿绳方向分速度所对应的一份动能全部损失了.因此,整个运动过程按机械能守恒来处理就是错误的.
(3)要求学生重新写出正确的方程组.
2mgLsin12mv 2v//vcos.
121v//mgL(1sin)mv2 22解得v2gL(sin2sin31)
(4)小结:很多实际问题都可以类比为碰撞,建立合理的碰撞模型可以很简洁直观地解决问题.下面继续看例题.
5.展示投影片5,其内容如下:
如图所示,质量分别为mA和mB的滑块之间用轻质弹簧相连,水平地面光滑.mA、mB原来静止,在瞬间给mB一很大的冲量,使mB获得初速度v0,则在以后的运动中,弹簧的最大势能是多少?
在学生认真读题后,教师引导学生讨论.
(1)mA、mB与弹簧所构成的系统在下一步运动过程中能否类
比为一个mA、mB发生碰撞的模型?(因系统水平方向动量守恒,所以可类比为碰撞模型)
(2)当弹性势能最大时,系统相当于发生了什么样的碰撞?(势能最大,动能损失就最大,因此可建立完全非弹性碰撞模型)
经过讨论,得到正确结论以后,要求学生据此而正确解答问题,得
2mAmBv0到结果为Ep
2(mAmB)(三)课堂小结
教师活动:让学生概括总结本节的内容。请一个同学到黑板上总结,其他同学在笔记本上总结,然后请同学评价黑板上的小结内容。
学生活动:认真总结概括本节内容,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,看谁的更好,好在什么地方。
点评:总结课堂内容,培养学生概括总结能力。
教师要放开,让学生自己总结所学内容,允许内容的顺序不同,从而构建他们自己的知识框架。(四)作业
“问题与练习”1~5题★教学体会
思维方法是解决问题的灵魂,是物理教学的根本;亲自实践参与知识的发现过程是培养学生能力的关键,离开了思维方法和实践活动,物理教学就成了无源之水、无本之木。学生素质的培养就成了镜中花,水中月。
因篇幅问题不能全部显示,请点此查看更多更全内容