1. 求指数衰减振荡信号x(t)eatsin0t的频谱,t>0。
eiteit由欧拉公式:sint
2iatX()F(x(t))e0sin0teitdte0atei0tei0titedt2i1[ai(0)]t[ai(0)]teedt2i0[ai(0)]te[ai(0)]te1002i[ai(0)][ai(0)]解:
111()2iai(0)ai(0)
12i02i(ai)20202(ai)20
2. 求序列的x(n)sin( 解法
4n2)3(n0,1,2,,7)离散付里叶变换。画出时域和频域图形。
1
j2/8N=8,W8e2(1i) 2X(0)0X(1)0X(2)0X(3)0X(4)0X(5)0X(6)0X(7)000000000012340246803604800561012912151812162024510152024306121824303671421283542012301230203000102022103000030102221030x(0)7x(1)14x(2)21x(3)x(4)2835x(5)42x(6)49x(7)00x(0)23x(1)02x(2)21x(3)x(4)0023x(5)02x(6)x(7) 21
x =[0.8660 0.2588 -0.5000 -0.9659 -0.8660 -0.2588 0.5000 0.9659] X =[0 3.4641 + 2.0000i 0 0 0 0 0 3.4641 - 2.0000i]
解法2 FFT
N=8,W8ej2/82(1i) 21=0.707-0.707i; W82=-i; W83=-0.707-0.707i W80=1; W8x(0)=0.866 X 00(0)= x(0)+W80x(4)=0; X0(0)= x00(0)+W80x01(0)=0; X(0)? x(4)=-0.866 W008 X 00(1)= x(0)-W8x(4)=1.732;
x(2)=-0.5 X 01(0)=0 ; W08 x(6)= 0.5 W08 X 01(1)=-1;
x(1)= 0.259 X 10(0)=0; x(5)= -0.259 W08 X 10(1)=0.518;
x(3)=-0.966 X 11(0)= 0; x(7)= 0.966 W08 X 11(1)=-1.932;
X0(1)=1.732+j; X(1) ?
X0(2) = 0; X(2) ? X0(3)= 1.732-j; X(3) ?
X1(0)=0; X(4) ? X1(1)=0.518+1.932i; X(5) ? X1(2)=0; X(6) ? X1(3)= 0.518-1.932i; X(7) ?
3. 求正弦信号xAsin(t)的概率密度函数,概率分布函数,均值,均方值,方差。 解:由xAsin(t)得tarcsinx Adt11/A1 222dx1(x/A)Ax在一个周期内概率密度函数
p(x)limt12dt2111lim 2222x0xTTdxTTAxAx概率分布函数为
F(x)xp()dx1AA22d1arcsinxAA
1xarcsinA2(AxA)均值为
xxp(x)dxAxAAx22dx1AAx0
A22均方值为
Ψxp(x)dx2x21Ax2A2x2AdxA2/2
方差为.
2x(xx)2p(x)dxA2/2
32sin()2sin()2;X()2 X1()2x(t)155x1(t)x2(t) 222555故:
-j-j1-j212X()eX1()eX2()e2[X1()X2()]22e-j3[sin()2sin()]2252
因篇幅问题不能全部显示,请点此查看更多更全内容