基于塑料制品的一个CAD / CAE集成的注塑模具设计系统
Ivan Matin & Miodrag Hadzistevic & Janko Hodolic &Djordje Vukelic & Dejan Lukic
摘要:模具设计是一个知识密集型的过程。本文介绍了一种面向知识型,基于特征的参数化、模块化、计算机辅助设计/计算机辅助工程(CAD / CAE)集成系统的模具设计。CAx系统的发展为塑料注塑成型的数值模拟和模具设计已经打开了产品分析在模具设计期间新的可能性。该系统集成了专门开发的模块计算注塑参数,模具设计,模具元素选择的Pro /工程师系统。这个系统接口使用了以CAD / CAE数据库为基础的参数以简化流程的设计、编辑和审核。并且在提出CAD / cae集成的注塑模具设计系统中呈现出了一般结构和部分输出结果。 关键字:模具设计 数据仿真 CAD CAE 1. 引言
对于制造塑料零件来说,注射成型工艺是最常见的成型工艺。一般来说,注塑成型设计包括塑料制品设计、模具设计、注射成型工艺设计, 所有这些都有助于塑造产品的质量以及生产效率的提高。而当这些过程涉及许多设计参数时,他们都需要被考虑在一个并行的方式中。计算机辅助塑料注射成型模具设计一直被许多世界学者长期关注。不同的学者开发了程序系统,帮助工程师设计零件,模具,注塑参数的选择。在过去的十年里,许多作者开发了用于塑料注射成型的计算机辅助设计/计算机辅助工程(CAD / CAE)模具设计系统。Jong等人利用Pro / E为CAD模架之内的模具设计开发了一个先进的协作集成设计系统。Low等人开发了一个应用于初始设计标准化的塑料注射模具的系统。
- 1 -
四川大学本科毕业设计 灯座注塑模具设计
该系统能够选择和管理标准的模具模座板,但不提供模具和注塑的计算。作者们提出了一个为塑料注塑模具规范腔布局设计系统的方法, 例如,只使用标准腔布局。当标准布局被使用时,他们的布局配置可以很容易地存储在数据库中。Lin等人使用最少的初始信息并基于功能特性为3D绘图模具描绘了一个结构设计系统。本设计系统包括模具组件的选择和计算。它使用Pro / E模块、Pro /程序和Pro / Toolkit,包括模块选择、修改和设计模具。Deng等人分析了发展的CAD / CAE集成。作者还为和模具设计和注射成型的数值模拟分析了CAD和CAE系统之间的系统和集成问题。作者提出一个功能,包含有一定数量的CAD / CAE功能。此功能不仅代表的塑料零件的几何信息,而且设计意图是面向分析。部分功能包含一个塑料零件的整体产品信息,开发特性(如倒角、排骨、支管台、孔等)、辅助功能,包含分析相关设计信息和开发的特性。墙和发展特点就是所谓的“组件功能”。高戴克等为模具设计和参数计算建立了一个CAE系统。该系统是建立在形态学矩阵和决策图基础之上的。该系统被用于热、流变和力学计算,但没有提供集成商业CAx软件。黄等人为注射成型开发了一个模架设计系统。他们使用的是特定的数据库,该系统利用Pro / E对建模数据库组件。Kong等人开发了一种参数化三维塑料注射模具设计系统集成与固体的作品。其他的以知识为基础的系统,例如,ESMOLD
IMOLD,IKMOULD,IKBMOULD,已经开发为注塑模具设计。模具设计划分为四个主要的步骤;分型面设计,结构设计、流道系统设计、模架的设计。该软件使用一个基于CAD系统提供一个交互式的环境,协助设计师
- 2 -
四川大学本科毕业设计 灯座注塑模具设计
完成模具的快速设计,促进标准化的模具设计过程。IKB模具应用程序包括数据库和知识库为模具制造。Lou等人开发了一个综合知识体系设计模架。该系统具有模块、尺寸计算、计算数量的模具框架选择注射机。这个系统使用的是Pro /模架库。本文描述了KBS和关键技术,如产品建模、框架选择。采用的长度,宽度,高度和数量的零件在模具中作为输入和9个参数(长度、宽度和高度等)作为输出。Moketal为注塑模具建立了一个智能协作的KBS。Mokatel已经开发出一种有效的检索系统, 虽然设计师可能不知道注册的规则数据库,但可以使用一个简单的图形在用户界面注册建模标准零件。模具设计系统使用了一个开放的API和商业CAD /计算机辅助制造(CAM)/ CAE的解决方案。该系统应用于标准化模具基地和模具零件在现代重工业。本系统采用的设计方法编辑,实现了主模型使用特性。设计师凭借发达系统提供的方法,可以建立主模型,它被定义为一个函数的3CAD,作为标准零件和重用标准零件虽然有力他们不承认规则的数据库。Todic等人为自动工艺规划生产注塑模具开发了软件解决方案。Maican等人使用 CAE机械等用,热和流变计算。他们分析了物理、机械和热性能的塑料使材料。 图1 总体结构的注塑模具设计系统集成为塑料制品
- 3 -
四川大学本科毕业设计 灯座注塑模具设计
他们定义了临界参数加载部分。纳丁等人开发尝试适合的所有需要选
- 4 -
四川大学本科毕业设计 灯座注塑模具设计
择的注射成型模具技术系统部分。仿真结果包括几何和制造业数据。在仿真结果的基础上,部分设计师可以优化部分几何,而模具设计师可以优化运行和冷却系统的模具。作者们开发了一个程序,它可以帮助注塑机器的程序员直接传输仿真数据给机器。周等人开发了一个虚拟的基于数值模拟的注塑系统。马等人用面向对象的方法为塑料注射模具设计系统开发了标准组件库。他们为合并不同的几何拓扑模型和机器人非几何信息开发了一个面向对象的模具组件库。多年来,许多研究人员试图通过使用各种基于知识工程(KBE)的方法,如基于规则的推理(事例)和案例基础(CBR)和参数化设计模板(PDT)使整个模具设计过程自动化。成等人开发了一个3DCAD知识基础辅助注塑模具设计系统(IKB模具)。在他们的研究中,模具设计的设计规则和专业知识都是从有经验的模具设计师和手册中获得的,并且通过了各种传统知识的获取过程。KBE的传统方法,如事例,CBR和简单的PDT已经成功地应用于模腔和跑步者布局设计自动化的一个产品模具。Ye等人提出了基于特征的和面向对象的分层表示和简化符号几何方法来自动化模具装配建模。前面提到的各种系统的分析表明,作者用不同的方法来解决这个问题,模具设计,把它简化成模具配置器(选择器)。他们用CAD / CAE集成创建精密模架选择规则。许多作者使用CAE系统数值模拟注塑成型参数定义的注塑。其中几个还开发了原始CAE模块对模具和注塑工艺计算。然而,一般的所有前面提到的系统是缺乏模块计算模具和注塑参数允许集成与数值仿真结果。这就会引出结论,需要创
- 5 -
四川大学本科毕业设计 灯座注塑模具设计
图2 结构数值模拟模块的注入成型过程
建一个软件系统,它集成了参数与结果的注射成型数值模拟获得的注塑、模具计算和选择。所有这一切都将被集成到CAD / CAE集成的注
- 6 -
四川大学本科毕业设计 灯座注塑模具设计
塑模具设计系统为塑料制品。 图3 形式定义模具几何
图.4 形式确定冷却通道之间的距离和模腔
2. 结构集成CAD / CAE系统
众所周知,对于支持模具设计系统的各种计算方法,不同的作者使用设计自动化技术如KBE(事例,CBR,PDT)或设计优化技术,如传(NLP,LP,BB,GBA,红外、人力资源)或无启发式方法搜索如(TS,SA,GA)和其他特殊技术,如(SPA,AR,ED)。交互式软件系统的开发,可以执行:3 d建模的部分,分析部分的设计和仿真模型设计、数值模拟注塑,
- 7 -
四川大学本科毕业设计 灯座注塑模具设计
模具设计与所需的计算。 该系统由四个基本模块: ·CAD建模模块的部分
·模块用于数值模拟的注射成型工艺 ·模块的计算参数和模具注塑设计计算和选择
·模块为模具建模(核心和腔设计和设计所有剩余模具组件) 一般结构的注塑模具设计系统集成为塑料制品是图1所示。 2.1 CAD建模部分(模块 Ⅰ)
该模块为CAD建模部分的第一个模块内部集成CAD / CAE系统。这个模块是用来生成CAD模型的塑料产品和适当的仿真模型。这个模块的结果是所有必要的塑料零件几何和精度指标的实体模型。精度指标:项目名称、数量、特征、特性名称、位置ID的基点,代码数量的模拟退火,贸易材料名称、材料等级,部分耐受性、机械规范(名称、锁模力、最大压力、尺寸的工件),和数量的空腔。如果几何和精密规范指定的(鉴于)与产品模型,同样的被用作输入到下一个模块,当这个模块只用于生成仿真模型的时候。
2.2模块用于数值模拟的注塑工艺(模块II)
模块II被用于注射成型过程的数值模拟。用户实现迭代模拟程序来确定模具的注塑能力参数和仿真模型规范。这个模块的结构显示在图2。 在一个产品模型被引进和聚合物被选自塑料材料数据库之后,用户选择最好的位置控制子系统。数据库包含流变、热力和机械性能的塑料材料。用户定义参数的注塑和选择位置的控制子系统。进行进一步的
- 8 -
四川大学本科毕业设计 灯座注塑模具设计
分析:塑性流动、充填时间、注射压力、压降、流量前温度,存在焊接线、有无空气陷阱,冷却质量等。
该模块提供了四种不同类型的模流分析,而每个分析旨在解决特定的问题:
·零件分析--这个分析用来测试一个已知的浇口位置、材料、和部分几何验证一个部分将有可接受的处理条件。
·浇口分析--这个分析测试多个浇口的位置和比较分析输出来确定最佳浇口位置。
·熔接痕分析--这个分析可以检测熔接痕位置和深度,能够在消除可能产生的质量纠纷和客户之间的腐朽之前去去解决美容问题。 最重要的参数如下: ·零件厚度 ·流道长度 ·半径和开模 ·厚度过度 ·零件材质 ·浇口的位置 ·浇口的数量 ·成型温度 ·熔融温度 ·注射压力 ·最大的注塑机压力
- 9 -
四川大学本科毕业设计 灯座注塑模具设计
图5 模架选择器形式
图6 机械模具形式计算
除了前面提到的注塑参数, 从冷却和注射成型的时间角度来看,该模块还显示以下仿真结果:熔接痕位置,气泡的分布、注塑压力、剪切应力分布、在仿真模型表面上的温度分布,仿真模型的质量,和仿真模型加注的质量。从这个模块输出的部分结果作为下一个模块的输入数
- 10 -
四川大学本科毕业设计 灯座注塑模具设计
据。这些输出结果是:材料等级和材料供应商,在流动方向上的弹性模量、横向弹性模量、注射压力、注射温度、模具温度、熔化温度、热塑性塑料的最高熔化温度,在熔融状态下热塑性塑料的密度,和最大压力的注塑机。在实现迭代SA过程、用户定义了模压性能仿真模型和注塑模型的参数。所有的结果都被仿真模型上不同的颜色所代表。 图7 分割力学计算方法
- 11 -
四川大学本科毕业设计 灯座注塑模具设计
2.3模块的计算参数和模具注塑设计计算和选择(模块III)
这个模块是用于分析计算,模具尺寸和它的选择。两种形式确定维度的核心和腔模如图3所示。基于仿真模型的维度和夹紧力(图3)用户选择模具材料和系统计算型心和型板的宽度和长度。模具型腔壁厚之间的冷却通道可以计算使用以下三个标准:标准容许剪切应力、许用弯曲应力准则,准则容许角等温线如图4所示,该系统采用了由前面提到的壁厚的数值进行比较出的最大值。
基于仿真模型的几何形状,用户选择形状和模具类型。选择模具形状、类型和子系统的形式如图5所示。完成这些步骤后,用户实现了模具规格的热、流变和力学计算。几种机械模具计算形式之一显示在图6。分割机械计算的算法如图7所示。在热,流变和机械计算之后,用户从模具基地选择模板。标准模板的选择形式如图8所示。该系统计算立管的厚度,固定,可移动模具板的价值。(图8)基于计算尺寸, 为升管的厚度值,可移动,冒口固定模具板,系统自动采用第一个主要标准值。厚度的计算和标准值的采用呈现在图8。交互式系统建议所需的模具板。模块从数据库加载维度并生成一个实体模型的板。选择后的板,板自动尺寸,材料板被分配,和3 d模型和二维工程图在需求上生成。模具组件的尺寸(如,固定板)显示在表单的模具板模式生成,如图9。这个系统需要从模具基地加载板尺寸。通过这种方式,负载任何其他必要的标准模板,以组成模具部件。组件模具由实例板块构成,如图10所示。
然后得到加载其他组件子系统如图。5。选择其他组件子系统包括螺
- 12 -
四川大学本科毕业设计 灯座注塑模具设计
栓和垫圈。组件的选择是基于产生式规则的作者和公司“D-M-E” 图8 标准模具形成的选择
图9 平板模型的生成
- 13 -
四川大学本科毕业设计 灯座注塑模具设计
图10 第四模块结构
2.4为模具建模模块(型心型腔设计和设计所有剩余模具组件,模块(四)
这个模块是用于CAD建模的模具(型心和型腔设计)。这个模块使用额外的软件工具从仿真(参考)模型包括收缩因子的塑料材料和自动化分割模量的固定和可移动的板块为自动化创建型心和型腔。这个模块的结构显示在图11。
这个模块包含的附加功能的软件工具:
• 应用一个收缩,对应设计塑料零件,几何,和成型条件,而在数值模拟
计算模块
·非标准板和模具组件使用概念·设计印象、插入、砂芯,
CAD模型
滑块和其他组件,定义一个形状的模制品
· 用标准组件填充模具组件如新开发模具基地,由DME模架和模具基
地的企业使用这个系统,和CAD建模喷射器别针,螺丝,和其他组件创建相应的间隙孔
· 创建滑行装置和吃水线,尺寸计算模块计算中参数的注塑和模具设
计的计算和选择
- 14 -
四川大学本科毕业设计 灯座注塑模具设计 · 在模具打开期间检查干扰的组件,在应用维度和选择模具组件之后
检查草图的表面,,用户加载3D模型的固定(型心)和活动(腔)板。在前面模块中计算的的几何模具规格,,自动集成到这个模块,并允许它来生成最终的模具装配。输出从这个模块接收完整的模具模型的装配如图.15 这个模块允许并不包含在模具基地的非标准的建模和标准模具组件。 3. 个案研究
基于塑料产品的CAD / CAE集成的注塑模具设计系统完整的理论框架呈现在了在前面的部分中。为了完成本文,这个系统完全是一个真实的案例上进行测试研究。系统进行了一些例子类似的塑料零件。基于CAD / CAE集成设计系统的一般结构,显示在图1中,作者系统测试了一些具体的例子。其中的一个塑料部分的示例用于验证的测试模型显示在图12。
对于注射成型工艺的数值模拟的模块定义最优区位设置控制子系统深蓝色区域表明设置子系统的最优位置,如图13所示。
基于尺寸、形状、材料产品的案例研究(图11),最优控制子系统的位置(图13),和注塑参数(表1),仿真模型显示在图14是生成的。
定义仿真模型浇口数值模拟的其中的一个规则是: 如果(隧道、塑料材料、质量)然后预测维度(上层隧道,长度,直径1,直径,半径、角度等)。 模块II输出部分输出结果,,这些被用于模块III,如表1所示。 图13 这部分最优控制子系统中的位置
- 15 -
四川大学本科毕业设计 灯座注塑模具设计
表1模块的数值模拟的注射成型工艺的部分输出结果
Material grade and material supplier Acrylonitrile butadiene styrene 780 (ABS 780),
Kumho Chemicals Inc.
Max injection pressure 100 MPa Mold temperature 60°C ili 40 Melt Temperature 230°C Injection Time 0,39 s 0,2 s Injection Pressure 27,93 MPa Recommended ejection temperature 79°C
Modulus of elasticity, flow direction for ABS 780 2,600 MPa Modulus of elasticity, transverse direction for ABS 780 2,600 MPa Poision ratio in all directions for ABS 780 0.38 Shear modulus for ABS 780 942 MPa
Density in liquid state 0.94032 g/cm3 Density in solid state 1.047 g/cm3
在模块3中,系统计算夹紧力F027.9 kN(图3),冷却通道直径dKT06 mm,冷却通道长度lKT090毫米(图4)。由于形状和尺寸的仿真模型,广场的形状与正常的性能选择模具图5所示。选择模具装配标准系列:1616,长度和宽度的156×156毫米型住房如图8。 分割的计算显示在图8、模具设计系统小组推荐以下模具板: ·顶尖夹紧板N03-1616-20 ·底部安装板N04-1616-20
- 16 -
四川大学本科毕业设计 灯座注塑模具设计
·固定模具板(核心板)N10A-1616-36 ·活动板(板模)N10B-1616-36 ·支撑板N20-1616-26 ·冒口N30-1616-46 ·喷射器垫板N40-1616-10 ·喷射板N50-1616-12
在完成固定和可移动的模具板从CAD建模的角度来看型心和型腔、冷却通道,其次是手动选择其他的模具标准组件如浇道套,定位环、导针、导套,导致衬套指南,垫片钢板、螺钉(M4××10,100,M10 M10××30,M6 16,M10×30等)和建模非标准模具组件(如果有的话)顶出针、喷射孔,插入等等。一个完整的模型与试验模具装配仿真模型显示在图15。
图 14 塑料部分的仿真模型
- 17 -
四川大学本科毕业设计 灯座注塑模具设计
图. 15模具装配的模型与测试仿真模型
4. 结论
本研究的目的是为模具设计开发一个CAD / CAE集成系统,这个集成系统是基于Pro /工程师系统并使用专门设计和开发的模块进行模具设计。本文为成型零件的多模穴模具提出一种软件解决方案,那就是所谓的一个产品模具。该系统是专门从事于标准模具的设计,该标准模具产品的长度和宽度远远大于该产品的高度, 也就是,该系统是为模具制造商的特殊需求进行系统定制。拟议的系统允许完全控制
- 18 -
四川大学本科毕业设计 灯座注塑模具设计
CAD / CAE功能参数,该系统使修改模板变得更方便和迅速。并从基于特征的CAD / CAE模块、参数,基于固体模型和面向对象这几个方面进行描述。该模块为注射成型数值模拟确定注塑参数的选择提供了可能。这个模块为完成模具设计注塑工艺的计算参数、模具设计的计算和选择提高了设计速度,减少模具设计错误,并提供了几何和必要的精密信息。这个系统的知识库可以通过通过互动模块被模具设计师访问,以便他们自己的智慧和经验也可以合并到总模具设计。零件制造业确认开发的CAD / CAE系统提供了正确的结果,并且被证明是一个值得信任的软件工具。
未来的研究将针对以下三个主要目标。第一个是开发一个为家庭模具设计的自动化的系统。该研究的另一个方向是与CAPP系统整合,用于塑料注塑模具制造开发的技术科学学院。最后,在这个地区目前的趋势来看,使用网络技术和黑板体系结构的一个协作系统应被设计和实现。
参考文献References
1. Zhou H, Shi S, Ma B (2009) A virtual injection molding system based on numerical simulation. Int J Manuf Technol 40:297–306
2. Jong WR, Wu CH, Liu HH, Li MY (2009) A collaborative navigation system for concurente mold design. Int J Adv Manuf Technol 40(3–4):215–225
3. Low MLH, Lee KS (2003) Application of standardization for initial design of plastic injection moulds. Int J Prod Res 41:2301–2324
4. Lin BT, Chang MR, Huang HL, Liu CHY (2008) Computeraided structural design of drawing dies for stamping processes based on functional features. Int J Adv Manuf Technol 42:1140–1152 5. Lin BT, Chan CHK, Wang JCH (2008) A knowledge-based parametric design system for drawing dies. Int J Adv Manuf Technol 36:671–680
6. Deng YM, Britton GA, Lam YC, Ma YS (2001) A feature-based CAD-CAE integration model for injection molded product design. Proceedings of the 16th International Conference on Production Research, 2001, Prague, 234–241
7. Deng YM, Britton GA, Lam YC, Ma YS (2002) Feature-based CAD/CAE integration model for injection-moulded product design. Int J Prod Res 15:3737–3750
- 19 -
四川大学本科毕业设计 灯座注塑模具设计 8. Godec D, Catic I, Sercer M (2003) Conceptual mould design for injection moulding of thermoplastics. Chem Eng Mater Sci 24(2–4):95–102
9. Godec D, Sercer M, Osrecki (2009) Design of mould for injection moulding of moulded part with internal thread. Tech Gazzete 16 (1):53–62
10. Huang JM, Jou YT, Zhang LC, Wang ST, Huang CX (2009) A web-based model for developing: a mold base design system. Expert Syst Appl 36(4):8356–8367
11. Kong L, Fuh JYH, Lee KS, Liu XL, Ling LS, Zhang YF, Nee AYC (2003) AWindows-native 3D plastic injection mold design system. J Mater Process Technol 139:81–89
12. Lou Z, Jiang H, Ruan X (2004) Development of an integrated knowledge-based system for mold-base design. J Mater Process Technol 150:194–199
13. Mok CK, Chin KS, Lan H (2008) An internet-based intelligent design system for injection moulds. Int J Robot Comput Integr Manuf 24:1–15
14. Mok CK, Chin KS, Ho JKL (2001) An interactive knowledge-based CAD system for mould design in injection moulding processes. Int J Adv Manuf Technol 17:27–38
15. Mok HS, Kim ChH, Kim ChB (2011) Automation of mold designs with the reuse of standard parts. ExpertSystAppl38(10):12537–12547
16. Todic V, Lukic D, Stevic M, Milosevic M (2008) Integrated CAPP system for plastic injection molds manufacturing. Mater Plastic 45 (4):381–389
17. Maican E, Bayer M, Tabara A, Balasoiu V (2008) Optimization of a polymeric rod from plants conveying equipment. Mater Plastice 45(2):184–196
18. Nardin B, Kuzman K, Kampus Z (2002) Injection moulding simulation results as an input to the injection moulding process. Int J of Mater Process Technol 130–131:310–314
19. Ma YS, Tor SB, Britton GA (2003) The development of standard component library for plastic injection mould design using an object-oriented approach. Int J Adv Manuf Technol 22:611–618 20. Chan WM, Yan L, Xiang W, Cheok BT (2003) A 3D CAD knowledge-based assisted injection mould design system. Int J Adv Manuf Technol 22:387–395
21. YeXG,LeeKS,FuhJYH,ZhangYF(2001)Automaticinitialdesign of injection mould. Int J Mater Prod Technol 16(6–7):592–604
22. Hodolic J, Matin I, Stevic M, Vukelic DJ (2009) Development of integrated CAD/CAE system of mold design for plastic injection molding. Mater Plastice 46(3):236–242 23. Creo Plastic Advisor Extension. www.ptc.com. Accessed 2011
24. Catic I (1985) Izmjena topline u kalupima za injekciono presanje plastomera, Biblioteka polimerstvo, pp 248, Zagreb, 1985
25. Mold Component Catalogue. http://www.dmeeu.com 26. Mold Component Catalogue. http://www.dme.net
- 20 -
四川大学本科毕业设计 灯座注塑模具设计 英文原文:
A CAD/CAE-integrated injection mold design system for plastic products
Ivan Matin & Miodrag Hadzistevic & Janko Hodolic & Djordje Vukelic & Dejan Lukic
Abstract:Mold design is a knowledge-intensive process. This paper describes a knowledge-based oriented, parametric, modular and feature-based integrated computer-aided design/computer-aided engineering (CAD/CAE) system for mold design. Development of CAx systems for numerical simulation of plastic injection molding and mold design has opened new possibilities of product analysis during the mold design. The proposed system integrates Pro/ENGINEER system with the specially developed module for the calculation of injection molding parameters, mold design, and selection of mold elements. The system interface uses parametric and CAD/CAE feature-based database to streamline the process of design, editing, and reviewing. Also presented are general structure and part of output results from the proposed CAD/CAE-integrated injection mold design system.
Keywords:Mold design. Numerical simulation. CAD. CAE
1 Introduction
Injection molding process is the most common molding process for making plastic parts. Generally, plastic injection molding design includes plastic product design, mold design, and injection molding process design, all of which contribute to the quality of the molded product as well as production efficiency [1]. This is process involving many design parameters that need to be considered in a concurrent manner. Mold design for plastic injection molding aided by computers has been focused by a number of authors worldwide for a long period. Various authors have developed program systems which help engineers to design part, mold, and selection parameters of injection molding. During the last decade, many authors have developed computer-aided design/computer-aided engineering (CAD/CAE) mold design systems for plastic injection molding. Jong et al. developed a collaborative integrated design system for concurrent mold design within the CAD mold base on the web, using Pro/E. Low et al. developed an application for standardization of initial design of plastic injection molds. The system enables choice and management of mold base of standard mold plates, but does not provide mold and injection molding calculations. The authors proposed a methodology of standardizing the cavity layout design system for plastic injection mold such that only standard cavity layouts are used. When standard layouts are used, their layout configurations can be easily stored in a database. Lin at al. describe a structural design system for 3D drawing mold based on functional features using a minimum set of initial information. In addition, it is also applicable to assign the functional features flexibly before accomplishing the design
- 21 -
四川大学本科毕业设计 灯座注塑模具设计
of a solid model for the main parts of a drawing mold. This design system includes modules for selection and calculation of mold components. It uses Pro/E modules Pro/Program and Pro/Toolkit, and consists of modules for mold selection, modification and design. Deng et al. analyzed development of the CAD/CAE integration. The authors also analyzed systems and problems of integration between CAD and CAE systems for
Fig. 1 General structure of integrated injection mold design system for plastic products
- 22 -
四川大学本科毕业设计 灯座注塑模具设计
Fig. 2 Structure of module for numerical simulation of injection molding process
- 23 -
四川大学本科毕业设计 灯座注塑模具设计
numerical simulation of injection molding and mold design. Authors propose a feature ontology consisting of a number of CAD/CAE features. This feature represents not only the geometric information of plastic part, but also the design intent is oriented towards analysis. Part features contain the overall product information of a plastic part, wall features, development features (such as chamfer, ribs, boss, hole, etc.), treatment features which contain analysis-related design information and subwall/developed features. Wall and development features are so called ―component features‖. Godec et al.developed a CAE system for mold design and injection molding parameters calculations. The system is based on morphology matrix and decision diagrams. The system is used for thermal, rheological and mechanical calculation, and material base management, but no integration with commercial CAx software is provided.。Huang et al.
developed a mold-base design system for injection molding. The database they used
- 24 -
四川大学本科毕业设计 灯座注塑模具设计
was parametric and feature-based oriented. The system used Pro/E for modeling database components. Kong et al developed a parametric 3D plastic injection mold design system integrated with solid works. Other knowledge-based systems, such as IMOLD,ESMOLD,IKMOULD, and IKBMOULD, have been developed for injection mold design. IMOLD divides mold design into four major steps; parting surface design, impression design, runner system design, and mold-base design. The software uses a knowledge-based CAD system to provide an interactive environment, assist designers in the rapid completion of mold design, and promote the standardization of the mold design process. IKB-MOULD application consists of databases and knowledge bases for mold manufacturing. Lou et al. developed an integrated knowledge-based system for mold base design. The system has module for impression calculation, dimension calculation, calculation of the number of This paper describes KBS and key technologies, such as product modeling, the frame-rule method, CBS, and the neural networks.A multilayer neural network has been trained by back propagation BP. mold plate sand selection of injection machine. The system uses Pro/Mold Base library. This neural network adopts length, width, height and the number of parts in the mold as input and nine parameters (length, width, and height of up and down set-in,mold bases side thickness,bottom thickness of the core, and cavity plates)as output. Moketal.[13,14]developed
an intelligent collaborative KBS for injection molds. Mokatel has developed an effective reuse and retrieval system that can register modeled standard parts using a simple graphical user interface even though designers may not know the rules of registration for a database. The mold design system was developed using an Open API and commercial CAD/computer aided manufacturing (CAM)/CAE solution. The system was applied to standardize mold bases and mold parts in Hyundai Heavy Industry. This system adopted the method of design editing, which implements the master model using features. The developed system provides methods whereby designers
Can register the master model,which is defined as a function of 3D CAD, as standard parts and effectively reuse standard parts even though they do not recognize the rules of the database. Todic et al.developed a software solution for automated process planning for manufacturing of plastic injection molds. This CAD/CAPP/CAM system does not provide CAE calculation of parameters of injection molding and mold design. Maican et al.used CAE for mechanical,thermal, and rheological calculations. They analyzed physical, mechanical, and thermal properties of plastic materials.They defined the critical parameters of loaded part. Nardin et al.tried to develop the system which would suit all the needs of the injection molding for selection of the part mold–technology system. The simulation results consist of geometrical and manufacturing data. On the basis of the simulation results, part designers can optimize part geometry, while mold designers can optimize the running and the cooling system of the mold. The authors developed a program which helps the programmers of the injection molding machine to transfer simulation data directly to the machine. Zhou et al developed a virtual injection molding system based on numerical simulation. Ma et al developed standard component library for plastic injection mold design using an
- 25 -
四川大学本科毕业设计 灯座注塑模具设计
object-oriented approach. This is an object oriented, library model for defining mechanical components parametrically. They developed an object-oriented mold component library model for incorporating different geometric topologies and non-geometric information. Over the years, many researchers have attempted to automate a whole mold design process using various knowledge-based engineering (KBE) approaches, such as rule-based reasoning (RBR),and case base (CBR) and parametric design template (PDT). Chan at al. [20] developed a 3D CAD knowledge-based-assisted injection mold design system (IKB mold). In their research, design rules and expert knowledge of mold design were obtained from experienced mold designers and
Fig. 3 Forms to define the mold geometry
handbooks through various traditional knowledge acquisition processes. he traditional KBE approaches, such as RBR, CBR, and simple PDT have been successfully applied to mold cavity and runner layout design automation of the one product mold. Ye et al.proposed a feature-based and object-oriented hierarchical representation and simplified symbolic geometry approach for automation mold assembly modeling. The previously mentioned analysis of various systems shows that authors used different ways to solve the problems of mold design by reducing it to mold configurator (selector). They used CAD/CAE integration for creating precision rules for
mold-base selection. Many authors used CAE system for numerical simulation of injection molding to define parameters of injection molding.Several also developed original CAE modules for mold and injection molding process calculation. However, common to all previously mentioned systems is the lack of module for calculation of mold and injection molding parameters which would allow integration with the results of numerical simulation. This leads to conclusion that there is a need to create a software system which integrates parameters of injection molding with the result obtained by numerical simulation of injection molding, mold calculation, and selection. All this would be integrated into CAD/CAE-integrated injection mold design system for plastic products.
Fig. 4 Forms to determine the distance between the cooling channels and mold cavity
- 26 -
四川大学本科毕业设计 灯座注塑模具设计
2 Structure of integrated CAD/CAE system
As is well known, various computational approaches for supporting mold design systems of various authors use design automation techniques such as KBE (RBR, CBR, PDT) or design optimization techniques such as traditional (NLP,LP, BB, GBA, IR, HR) or met heuristic search such as (TS, SA, GA) and other special techniques such as (SPA, AR, ED). The developed interactive software system makes possible to perform: 3D modeling of the parts, analysis of part design and simulation model design, numerical simulation of injection molding, and mold design with required calculations.
Fig. 5 Mold-base selector forms
The system consists of four basic modules: ·Module for CAD modeling of the part ·Module for numerical simulation of injection molding process ·Module for calculation of parameters of injection molding and mold design calculation and selection ·Module for mold modeling (core and cavity design and design all residual mold components)
The general structure of integrated injection mold design system for plastic products is shown in Fig. 1.
2.1 Module for CAD modeling of the part (module I)
The module for CAD modeling of the part is the first module within the integrated
- 27 -
四川大学本科毕业设计 灯座注塑模具设计
CAD/CAE system. This module is used for generating CAD model of the plastic product and appropriate simulation model. The result of this module is solid model of plastic part with all necessary geometrical and precision specifications. Precision specifications are: project name, number, feature ID, feature name, position of base point, code number of simulation annealing, trade material name, material grade, part tolerance, machine specification (name, clamping force, maxi-
mal pressure, dimensions of work piece), and number of cavity. If geometrical and precision specification is specified (given) with product model, the same are used as input to the next module, while this module is used only to generate the simulation model.
2.2 Module for numerical simulation of injection molding process (module II ) Module II is used for numerical simulation of injection molding process. User implements an
Fig. 6 Form for mechanical mold calculation
iterative simulation process for determining the mold ability parameters of injection molding and simulation model specification. The structure of this module is shown in Fig. 2.
After a product model is imported and a polymer is selected from the plastic material database, user selects the best location for gating subsystem. The database contains rheological, thermal, and mechanical properties of plastic materials. User defines parameters of injection molding and picks the location for the gating subsystem. Further analyses are carried out: the plastic flow, fill time, injection pressure,pressure
- 28 -
四川大学本科毕业设计 灯座注塑模具设计
drop, flow front temperature, presence of weld line,presence of air traps, cooling quality, etc.
The module offers four different types of mold flow anal-ysis. Each analysis is aimed at solving specific problems: ·Part analysis—This analysis is used to test a known gate location, material, and part geometry to verify that a part will have acceptable processing conditions. ·Gate analysis—This analysis tests multiple gate locations and compares the analysis outputs to determine the optimal gate location. ·Sink mark analysis—This analysis detects sink mark locations and depths to resolve cosmetic problems before the mold is built eliminating quality disputes that could arise between the molder and the customer.
The most important parameters are the following: ·Part thickness ·Flow length ·Radius and drafts ·Thickness transitions ·Part material ·Location of gates ·Number of gates ·Mold temperature ·Melt temperature ·Injection pressure ·Maximal injection molding machine pressure
in addition to the previously mentioned parameters of injection molding, the module shows following simulation results: welding line position, distribution of air traps, the distribution of injection molding pressure, shear stress distribution, temperature distribution on the surface of the
simulation model, the quality of filling of a simulation model, the quality of a simulation model from the standpoint of cooling, and time of injection molding.
A part of output results from this module are the input data for the next module. These output results are: material grade and material supplier, modulus of elasticity in the flow direction, modulus of elasticity transverse direction, injection pressure, ejection temperature, mold temperature, melting temperature, highest melting temperature thermoplastic, thermoplastic density in liquid and solid state, and maximum pressure of injection molding machine. During implementation of iterative SA procedure, user defines the moldability simulation model and the parameters of injection molding. All results are represented by different colors in the regions of the simulation model.
2.3 Module for calculation of parameters of injection molding and mold design calculation and selection (module III)
This module is used for analytical calculations, mold sizing, and its selection. Two of the more forms for determining the dimensions of core and cavity mold plates are shown in Fig. 3. Based on the dimensions of the simulation model and clamping force (Fig. 3) user selects the mold material and system calculates the width and length of core and cavity plates. Wall thickness between the mold cavity to the cooling channel
- 29 -
四川大学本科毕业设计 灯座注塑模具设计
can be calculated with the following three
criteria: criterion allowable shear stress, allowable bending stress criterion, and the criterion of allowable angle isotherms are shown in Fig. 4. The system adopts the maximum value of comparing the values of wall thickness calculated by previously mentioned criteria. Based on the geometry of the simulation model, user select shape and mold type. Forms for the selection mold Fig. 7 Segment of the mechanical calculation algorithm
Fig. 8 Forms for standard mold plates selection
- 30 -
四川大学本科毕业设计 灯座注塑模具设计
Fig. 9 Forms for mold plate model generation
shape, type, and subsystems are shown in Fig. 5. Once these steps are completed, user implements the thermal, rheological, and mechanical calculation of mold specifications. An example of one of the several forms for mechanical mold calculation is shown in Fig. 6. Segment of the algorithm of mechanical calculations is shown in Fig. 7. After the thermal, rheological, and mechanical calculations, user selects mold plates from the mold base. Form for the selection of standard mold plates is shown in Fig. 8. The system calculates the value of thickness of risers, fixed, and movable mold plates (Fig. 8). Based on the calculated dimensions, the system automatically adopts the first major standard value for the thickness of risers, movable, and fixed mold plate. Calculation of the thickness and the adoption of standard values
- 31 -
四川大学本科毕业设计 灯座注塑模具设计
are presented in the form as shown in Fig. 8. The interactive system recommends the required mold plates. The module loads dimensions from the database and generates a solid model of the plate. After the plate selection, the plate is automatically dimensioned, material plate is assigned, and 3D model and 2D technical drawing are generated on demand. Dimensions of mold component (e.g.fixed plate) are shown in the form for mold plate mode generation, as shown in Fig. 9. The system loads the plate size required from the mold base. In this way, load up any other necessary standard mold plates that make up the mold subassembly. Subassembly mold model made up of instance plates are shown in Fig. 10 Then get loaded other components of subsystems as shown in Fig. 5. Subsystem for selection other components include bolts and washers. The way of components selection are based on a production rules by authors and by company―D-M-E‖.
Fig. 10 Structure of module IV
- 32 -
四川大学本科毕业设计 灯座注塑模具设计
Fig. 11 Subassembly model of mold
2.4 Module for mold modeling (core and cavity design and design all residual
- 33 -
四川大学本科毕业设计 灯座注塑模具设计
mold components; module IV)
This module is used for CAD modeling of the mold (core and cavity design). This module uses additional software tools for automation creating core and cavity from simulation (reference) model including shrinkage factor of plastics material and automation splitting mold volumes of the fixed and movable plates. The structure of this module is shown in Fig. 11.
Additional capability of this module consists of software tools for: ·Applying a shrinkage that corresponds to design plastic part, geometry, and molding conditions, which are computed in module for numerical simulation ·Make conceptual CAD model for nonstandard plates and mold components ·Design impression, inserts, sand cores, sliders and other components that define a shape of molded part ·Populate a mold assembly with standard components such as new developed mold base which consists of D-M-E mold base and mold base of enterprises which use this system, and CAD modeling ejector pins, screws, and other components creating corresponding clearance holes ·Create runners and waterlines, which dimensions was calculated in module for calculating of parameters of injection molding and mold design calculation and selection ·Check interference of components during mold opening, and check the draft surfaces After applied dimensions and selection mold components, user loads 3D model of the fixed (core) and movable (cavity) plate. Geometry mold specifications, calculated in the previous module, are automatically integrated into this module, allowing it to generate the final mold assembly. Output from this module receives the complete mold model of the assembly as shown in Fig. 15. This module allows modeling of nonstandard and standard mold components that are not contained in the mold base. 3 Case study
The complete theoretical framework of the CAD/CAE integrated injection mold design system for plastic products was presented in the previous sections. In order to complete this review, the system was entirely tested on a real case study. The system was tested on few examples of similar plastic parts. Based on the general structure of the model of integrated CAD/CAE design system shown in Fig. 1, the authors tested the system on some concrete examples. One of the examples used for verification of the test model of the plastic part is shown in Fig. 12.
The module for the numerical simulation of injection molding process defines the optimal location for setting gating subsystem. Dark blue regions indicate the optimal position for setting gating subsystem as shown in Fig. 13.
Based on dimensions, shape, material of the case study product (Fig. 11), optimal gating subsystem location (Fig. 13), and injection molding parameters (Table 1), the simulation model shown in Fig. 14 was generated.
One of the rules for defining simulation model gate for numerical simulation:
IF (tunnel, plastic material, mass) THEN prediction dimension (upper tunnel, length, diameter1, diameter2,radius, angle, etc.)
Part of the output results from module II, which are used in module III are shown in
- 34 -
四川大学本科毕业设计 灯座注塑模具设计
Table 1.
Fig. 13 Optimal gating subsystem location in the part
Table 1 Part of the output results from the module for the numerical simulation of injection molding process
In module III, the system calculates clamping force F027.9 kN (Fig. 3), cooling channel diameter dKT06 mm, cooling channel length lKT090 mm (Fig. 4). Given the shape and dimensions of the simulation model, square shape of mold with normal performance was selected as shown in Fig. 5. Selected mold assembly standard series: 1,616, length and width of mold housing 156×156 mm as shown in Fig. 8. In the segment of calculation shown in Fig. 8, mold design system panel recommends the following mold plates:
•Top clamping plate N03-1616-20 •Bottom clamping plate N04-1616-20
•Fixed mold plate (core plate) N10A-1616-36 •Movable plate (cavity plate) N10B-1616-36 •Support plate N20-1616-26 •Risers N30-1616-46
•Ejector retainer plate N40-1616-10 •Ejector plate N50-1616-12
After finishing the fixed and movable mold plates from the standpoint of CAD modeling core and cavity plates, cooling channel, followed by manual selection of other mold standard components such as sprue bush, locating ring, guide pins, guide bush, leading bushing guide, spacer plates, screws (M4×10, M10×100, M10×30, M6×16, M10×30, etc.) and modeling nonstandard mold components (if any) ejector pins, ejector holes, inserts etc. A complete model of the mold assembly with tested simulation model is shown in Fig. 15. Fig. 14 Simulation model of plastic part
Fig. 15 Model of the mold assembly with tested simulation model 4 Conclusion
The objective of this research was to develop a CAD/CAE integrated system for mold design which is based on Pro/ ENGINEER system and uses specially designed and developed modules for mold design. This paper presents a software solution for multiple cavity mold of identical molding parts, the so-called one product mold. The system is dedicated to design of normal types of molds for products whose length and width are substantially greater than product height, i.e., the system is customized for special requirements of mold manufacturers. The proposed system allows full control over CAD/CAE feature parameters which enables convenient and rapid mold modification. The described CAD/CAE modules are feature-based, parametric, based on solid models, and object oriented. The module for numerical simulation of injection molding allows the determination selection of injection molding parameters. The module for calculation of parameters of injection molding process and mold design calculation and selection improves design faster, reduces mold design errors, and provides geometric and precision information necessary for complete mold design.
- 35 -
四川大学本科毕业设计 灯座注塑模具设计
The knowledge base of the system can be accessed by mold designers through interactive modules so that their own intelligence and experience can also be incorporated
into the total mold design. Manufacture of the part confirms that the developed CAD/CAE system provides correct results and proves to be a confident software tool. Future research will be directed towards three main goals. The first is to develop a system for automation of family mold design. Another line of research is the integration with CAPP system for plastic injection molds manufacturing developed at the Faculty of Technical Sciences. Finally,
following current trends in this area, a collaborative system using web technologies and blackboard architecture shall be designed and implemented。 References
1. Zhou H, Shi S, Ma B (2009) A virtual injection molding system based on numerical simulation. Int J Manuf Technol 40:297–306
2. Jong WR, Wu CH, Liu HH, Li MY (2009) A collaborative navigation system for concurente mold design. Int J Adv Manuf Technol 40(3–4):215–225
3. Low MLH, Lee KS (2003) Application of standardization for initial design of plastic injection moulds. Int J Prod Res 41:2301–2324
4. Lin BT, Chang MR, Huang HL, Liu CHY (2008) Computeraided structural design of drawing dies for stamping processes based on functional features. Int J Adv Manuf Technol 42:1140–1152
5. Lin BT, Chan CHK, Wang JCH (2008) A knowledge-based parametric design system for drawing dies. Int J Adv Manuf Technol 36:671–680
6. Deng YM, Britton GA, Lam YC, Ma YS (2001) A feature-based CAD-CAE integration model for injection molded product design. Proceedings of the 16th International Conference on Production Research, 2001, Prague, 234–241
7. Deng YM, Britton GA, Lam YC, Ma YS (2002) Feature-based CAD/CAE integration model for injection-moulded product design. Int J Prod Res 15:3737–3750 8. Godec D, Catic I, Sercer M (2003) Conceptual mould design for injection moulding of thermoplastics. Chem Eng Mater Sci 24(2–4):95–102
9. Godec D, Sercer M, Osrecki (2009) Design of mould for injection moulding of moulded part with internal thread. Tech Gazzete 16 (1):53–62
10. Huang JM, Jou YT, Zhang LC, Wang ST, Huang CX (2009) A web-based model for developing: a mold base design system. Expert Syst Appl 36(4):8356–8367
11. Kong L, Fuh JYH, Lee KS, Liu XL, Ling LS, Zhang YF, Nee AYC (2003) AWindows-native 3D plastic injection mold design system. J Mater Process Technol 139:81–89
12. Lou Z, Jiang H, Ruan X (2004) Development of an integrated knowledge-based system for mold-base design. J Mater Process Technol 150:194–199
13. Mok CK, Chin KS, Lan H (2008) An internet-based intelligent design system for injection moulds. Int J Robot Comput Integr Manuf 24:1–15
14. Mok CK, Chin KS, Ho JKL (2001) An interactive knowledge-based CAD system for mould design in injection moulding processes. Int J Adv Manuf Technol 17:27–38 15. Mok HS, Kim ChH, Kim ChB (2011) Automation of mold designs with the reuse
- 36 -
四川大学本科毕业设计 灯座注塑模具设计
of standard parts. ExpertSystAppl38(10):12537–12547
16. Todic V, Lukic D, Stevic M, Milosevic M (2008) Integrated CAPP system for plastic injection molds manufacturing. Mater Plastic 45 (4):381–389
17. Maican E, Bayer M, Tabara A, Balasoiu V (2008) Optimization of a polymeric rod from plants conveying equipment. Mater Plastice 45(2):184–196
18. Nardin B, Kuzman K, Kampus Z (2002) Injection moulding simulation results as an input to the injection moulding process. Int J of Mater Process Technol 130–131:310–314
19. Ma YS, Tor SB, Britton GA (2003) The development of standard component library for plastic injection mould design using an object-oriented approach. Int J Adv Manuf Technol 22:611–618
20. Chan WM, Yan L, Xiang W, Cheok BT (2003) A 3D CAD knowledge-based assisted injection mould design system. Int J Adv Manuf Technol 22:387–395
21. YeXG,LeeKS,FuhJYH,ZhangYF(2001)Automaticinitialdesign of injection mould. Int J Mater Prod Technol 16(6–7):592–604
22. Hodolic J, Matin I, Stevic M, Vukelic DJ (2009) Development of integrated CAD/CAE system of mold design for plastic injection molding. Mater Plastice 46(3):236–242
23. Creo Plastic Advisor Extension. www.ptc.com. Accessed 2011
24. Catic I (1985) Izmjena topline u kalupima za injekciono presanje plastomera, Biblioteka polimerstvo, pp 248, Zagreb, 1985
25. Mold Component Catalogue. http://www.dmeeu.com 26. Mold Component Catalogue. http://www.dme.net
- 37 -
因篇幅问题不能全部显示,请点此查看更多更全内容