发布网友 发布时间:2022-04-22 12:57
共8个回答
热心网友 时间:2022-07-05 12:56
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
扩展资料
无理数的发现:伟大的数学家毕达哥拉斯认为:世界上只存在整数和分数,除此以外,没有别的什么数了。可是不久就出现了一个问题:当一个正方形的边长是1的时候,对角线的长m等于多少。是整数呢,还是分数。
毕达哥拉斯和他的门徒费了九牛二虎之力,也不知道这个m究竟是什么数。世界上除了整数和分数以外还有没有别的数。这个问题引起了学派成员希伯斯的兴趣,他花费了很多的时间去钻研,最终希伯斯断言:m既不是整数也不是分数,是当时人们还没有认识的新数。
从希伯斯的发现中,人们知道了除了整数和分数以外,还存在着一种新数,就是一个新数,当时人们觉得,整数和分数是容易理解的,就把整数和分数合称“有理数”,而希伯斯发现的这种新数不好理解,就取名为“无理数”。
参考资料来源:百度百科-无理数
参考资料来源:百度百科-希伯斯
热心网友 时间:2022-07-05 14:14
有理数----有理数的定义是:只要能以分数形式表现出来的数,就是有理数(当然必须限定是分母、分子都是整数,且分母不得为0)。所以整数、有限小数、循环小数、及分数都是有理数。简单的说,就是:可以用分数表示的数。
无理数----无理数的定义刚好和有理数相反。无理数就是无法以单纯分数形式表示的数,例如无法开出的根号数(根号2、根号3...),或是某些特定的无限(不循环)小数,例如大家熟知的圆周率。
大家都知道著名的圆周率π=3.1415926……是个无限不循环的小数,可是大家知道像π这样无限不循环的小数又叫无理数吗?为什么叫无理数呢?关于无理数的发现还有个带有血腥味的故事呢。
公元前六世纪,古希腊有个数学权威叫毕达哥拉斯,他曾断言:任何两条线段相比,都可以用两个整数之比来表示,由此推导出,自然界只有整数和分数两种数,不存在其他的数。但毕达哥拉斯这个结论提出不久,他的学生希伯斯就发现边长为1的正方形,其对角线和边长不能成为整数比,即既不是整数,又不是分数,而是一个当时人们还未认识的数。希伯斯的发现触犯了毕达哥拉斯的权威。于是,毕达哥拉斯就下令封锁这个发现,不让其传播。可是,希伯斯的发现还是不胫而走,越来越多的人都知道了这一新数。毕达哥拉斯大为恼怒,就下令追捕希伯斯,最后在一条船上找到希伯斯,竟残忍地把希伯斯手脚捆住,扔进波涛汹涌的地中海。
希伯斯虽然葬身鱼腹,冤沉大海,但他的发现却为举世公认。由于人们当时不能理解这种新数,但这种新数(如圆周率π)在自然界的确大量客观存在,因而人们把这种数与已发现的整数、分数相比,将它取名为“无理数”,而将分数、整数称为“有理数”。
热心网友 时间:2022-07-05 15:49
无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
热心网友 时间:2022-07-05 17:40
无理数,即非有理数之实数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等。无理数的另一特征是无限的连分数表达式。传说中,无理数最早由毕达哥拉斯学派弟子希伯斯发现,而毕达哥拉斯深信任意数均可用整数及分数表示,不相信无理数的存在。后来希伯斯将无理数透露给外人因而被处死,其罪名等同于“渎神”。
热心网友 时间:2022-07-05 19:48
也叫无限不循环小数,小数点后有无数个数,比如10/3得到的数是3.3333333…
热心网友 时间:2022-07-05 22:13
不能用两个整数的比的形式(即分数)表示的数叫做无理数。
热心网友 时间:2022-07-06 00:54
无限不循环小数叫做无理数
热心网友 时间:2022-07-06 04:25
无限不循环小数