如何求一个函数的原函数?

发布网友 发布时间:2022-04-24 17:43

我来回答

2个回答

好二三四 时间:2022-09-12 16:07

原函数是∫x^ndx=x^(n+1)/(n+1)+C,原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。

已知函数f(x)是一个定义在某区间的函数,如果存在可导函数F(x),使得在该区间内的任一点都有dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。故若函数f(x)有原函数,那么其原函数为无穷多个。

热心网友 时间:2024-10-30 17:32

求一个导数的原函数使用积分,积分是微分的逆运算,即知道了函数的导函数,反求原函数。

积分求法:

1、积分公式法。直接利用积分公式求出不定积分。

2、换元积分法。换元积分法可分为第一类换元法与第二类换元法。

(1)第一类换元法(即凑微分法)。通过凑微分,最后依托于某个积分公式。进而求得原不定积分。

(2)第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。

3、分部积分法。设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu 

两边积分,得分部积分公式∫udv=uv-∫vdu。

扩展资料:

原函数的几何意义和物理意义

设f(x)在[a,b]上连续,则由 曲线y=f(x),x轴及直线x=a,x=b围成的曲边梯形的面积函数(指代数和——x轴上方取正号,下方取负号)是f(x)的一个原函数.若x为时间变量,f(x)为直线运动的物体的速度函数,则f(x)的原函数就是路程函数。

原函数性质:

1、若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。

2、函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,

3、故若函数f(x)有原函数,那么其原函数为无穷多个。

参考资料来源:百度百科-原函数

热心网友 时间:2024-10-30 17:32

计算不定积分即可.

1、∫(x^2-1)dx=1/3×x^3-x+C,C是任意实数。所以,1/3×x^3-x+C是x^2-1的原函数

2、∫1/x dx=ln|x|+C。所以,ln|x|+C是1/x的原函数

3、∫3^x dx=1/ln3×3^x+C。所以,1/ln3×3^x+C是3^x的原函数

4、∫0 dx=C。所以,C是0的原函数

热心网友 时间:2024-10-30 17:29

求一个导数的原函数使用积分,积分是微分的逆运算,即知道了函数的导函数,反求原函数。

积分求法:

1、积分公式法。直接利用积分公式求出不定积分。

2、换元积分法。换元积分法可分为第一类换元法与第二类换元法。

(1)第一类换元法(即凑微分法)。通过凑微分,最后依托于某个积分公式。进而求得原不定积分。

(2)第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。

3、分部积分法。设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu 

两边积分,得分部积分公式∫udv=uv-∫vdu。

扩展资料:

原函数的几何意义和物理意义

设f(x)在[a,b]上连续,则由 曲线y=f(x),x轴及直线x=a,x=b围成的曲边梯形的面积函数(指代数和——x轴上方取正号,下方取负号)是f(x)的一个原函数.若x为时间变量,f(x)为直线运动的物体的速度函数,则f(x)的原函数就是路程函数。

原函数性质:

1、若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。

2、函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,

3、故若函数f(x)有原函数,那么其原函数为无穷多个。

参考资料来源:百度百科-原函数

热心网友 时间:2024-10-30 17:32

计算不定积分即可.

1、∫(x^2-1)dx=1/3×x^3-x+C,C是任意实数。所以,1/3×x^3-x+C是x^2-1的原函数

2、∫1/x dx=ln|x|+C。所以,ln|x|+C是1/x的原函数

3、∫3^x dx=1/ln3×3^x+C。所以,1/ln3×3^x+C是3^x的原函数

4、∫0 dx=C。所以,C是0的原函数

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com