“矢量”是什么意思?

发布网友 发布时间:2022-04-24 18:52

我来回答

4个回答

好二三四 时间:2022-08-12 15:21

矢量是一种既有大小又有方向的量,又称为向量。一般来说,在物理学中称作矢量,例如速度、加速度、力等。 在计算机中,矢量图可以无限放大永不变形。

而且矢量是数学、物理学和工程科学等多个自然科学中的基本概念,指一个同时具有大小和方向的几何对象,因常以箭头符号标示以区别于其它量而得名。直观上,矢量通常被标示为一个带箭头的线段。线段的长度可以表示矢量的大小,而矢量的方向也就是箭头所指的方向。物理学中的位移、速度、力、动量、磁矩、电流密度等,都是矢量。与矢量概念相对的是只有大小而没有方向的标量。

在数学中,矢量也常称为向量,即有方向的量。并采用更为抽象的矢量空间来定义,而定义具有物理意义上的大小和方向的向量概念则需要引进了范数和内积的欧几里得空间。

热心网友 时间:2022-08-12 12:29

“矢量”的意思是指有大小和方向的物理量,如速度、动量、力。

矢量,读音:[shǐ liàng ]

造句:

1、两个相等的矢量并不一定有相同的物理效果。

2、每个矢量都可以分解成协变分量或逆变分量。

“矢量”又称向量,最广义指线性空间中的元素。它的名称起源于物理学既有大小又有方向的物理量,通常绘画成箭号,因以为名。

“矢量”是数学、物理学和工程科学等多个自然科学中的基本概念,指一个同时具有大小和方向的几何对象,因常常以箭头符号标示以区别于其它量而得名。直观上,矢量通常被标示为一个带箭头的线段。线段的长度可以表示矢量的大小,而矢量的方向也就是箭头所指的方向。物理学中的位移、速度、力、动量、磁矩、电流密度等,都是矢量。与矢量概念相对的是只有大小而没有方向的标量。

热心网友 时间:2022-08-12 13:47

一.数学解释
(向量)
1.三维几何学解释:
就是根据物体的几何性质而确定的一种定位方法.主要通过线性相关和线性变换解释几何问题
2.代数学:
在有限维向量空间中,也与线性相关与线性变换密切相关,但无需*于三维组.同时假定有理运算能够施行(这个极大地影响了计算机科学发展),讨论域为任意域,并且要将基本数系的可交换性除去.
无限维向量空间(任意维),涉及Zorn引理、基数理论、拓扑等较深的数学概念,在这里建议网友对抽象代数学有一定基础时自己理解。
[编辑本段]二、物理学解释
简单的理解:“矢量和标量的定义如下:(到大学物理中会详细研究)
(1)定义或解释:有些物理量,既要有数值大小(包括有关的单位),又要有方向才能完全确定。这些量之间的运算并不遵循一般的代数法则,而遵循特殊的运算法则。这样的量叫做物理矢量。有些物理量,只具有数值大小(包括有关的单位),而不具有方向性。这些量之间的运算遵循一般的代数法则。这样的量叫做物理标量。
(2)说明:①矢量之间的运算要遵循特殊的法则。矢量加法一般可用平行四边形法则。由平行四边形法则可推广至三角形法则、多边形法则或正交分解法等。矢量减法是矢量加法的逆运算,一个矢量减去另一个矢量,等于加上那个矢量的负矢量。A-B=A+(-B)。矢量的乘法。矢量和标量的乘积仍为矢量。矢量和矢量的乘积,可以构成新的标量,矢量间这样的乘积叫标积;也可构成新的矢量,矢量间这样的乘积叫矢积。例如,物理学中,功、功率等的计算是采用两个矢量的标积。W=F·S,P=F·v,物理学中,力矩、洛仑兹力等的计算是采用两个矢量的矢积。M=r×F,F=qv×B。②物理定律的矢量表达跟坐标的选择无关,矢量符号为表述物理定律提供了简单明了的形式,且使这些定律的推导简单化,因此矢量是学习物理学的有用工具。”
个人的理解:矢量规律的总结,基于人们对空间广义的对称性的理解。矢量所根据的对平移与转动的对称性(不变性)。对迄今发现的所有规律均有效。使用矢量分析方法,较数学分析,相当于知道结论推过程,十分方便。这种方法具有极大的创造性,对物理研究或许有所启发。

热心网友 时间:2022-08-12 15:22

付费内容限时免费查看回答矢量是既有大小又有方向的量。一般来说,在物理学中称作矢量,在数学中称作向量。在计算机中,矢量图可以无限放大永不变形。矢量(英语:Vector)是数学、物理学和工程科学等多个自然科学中的基本概念,指一个同时具有大小和方向的几何对象,因常常以箭头符号标示以区别于其它量而得名。直观上,矢量通常被标示为一个带箭头的线段。线段的长度可以表示矢量的大小,而矢量的方向也就是箭头所指的方向。物理学中的位移、速度、力、动量、磁矩、电流密度等,都是矢量。

如果我的回答对你有帮助的话,请在结束后给个赞哟~

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com