裂项相消法是什么?

发布网友 发布时间:2022-04-24 09:11

我来回答

1个回答

热心网友 时间:2022-06-18 10:24

裂项法,这是分解与组合思想在数列求和中的具体应用。是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。 通项分解(裂项)倍数的关系。通常用于代数,分数,有时候也用于整数。

【例1】【分数裂项基本型】求数列an=1/n(n+1) 的前n项和.

解:an=1/[n(n+1)]=(1/n)- [1/(n+1)](裂项)

则 Sn=1-(1/2)+(1/2)-(1/3)+(1/3)-(1/4)…+(1/n)- [1/(n+1)](裂项求和)

= 1-1/(n+1)

= n/(n+1)

【例2】【整数裂项基本型】求数列an=n(n+1) 的前n项和.

解:an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项)

则 Sn=[1×2×3-0×1×2+2×3×4-1×2×3+……+n(n+1)(n+2)-(n-1)n(n+1)]/3(裂项求和)

= [n(n+1)(n+2)]/3

扩展资料

1、加法

a、整数和小数:相同数位对齐,从低位加起,满十进一

b、 同分母分数:分母不变分子相加;异分母分数:先通分,再相加。

2、减法

a、整数和小数:相同数位对齐,从低位减起,哪一位不够减退一当十再减

b、 同分母分数:分母不变,分子相减;分母分数:先通分,再相减。

3、乘法

a、整数和小数:用乘数每一位上的数去乘被乘数用哪一-位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同

b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分结果要化简。

4、除法

a、整数和小数:除数有几位先看被除数的前几位, (不够就多看一位) ,除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐

b、甲数除以乙数( 0除外)等于甲数除以乙数的倒数。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com