裂相相消,错位相减,倒序相加分别适用于哪些形式的数列?

发布网友 发布时间:2022-04-24 09:11

我来回答

2个回答

热心网友 时间:2022-06-18 10:24

1、裂项相消法适用于an=1/n(n+1)=1/n-1/(n+1) 类型的数列,例如:

Sn=1/1*2+1/2*3+...+1/n(n+1) 

=1-1/2+1/2-1/3+1/3-1/4+...+1/(n-1)-1/n+1/n-1/(n+1)(中间相消,最后只剩首尾两项) 

=1-1/(n+1)

2、错位相减法适用于等比数列求和,这个在等比数列求和公式的推导中使用过。例如:

Sn=1/2+1/4+1/8+....+1/2^n 

两边同时乘以1/2,得

1/2Sn=1/4+1/8+...+1/2^n+1/2^(n+1)

两式相减得

1/2Sn=1/2-1/2^(n+1) 

Sn=1-1/2^n

3、倒序相加法适用于等差数列求和,例如:

Sn=1+2+..+n 

Sn=n+n-1+...+2+1 

两式相加得

2Sn=(1+n)+(2+n-1)+...+(n+1) 

=(n+1)*n 

Sn=n(n+1)/2

扩展资料:

等差数列的性质

1、任意两项am,an的关系为:an=am+(n-m)d,它可以看作等差数列广义的通项公式。

2、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N*。

3、若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq。

4、对任意的k∈N*,有Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。

热心网友 时间:2022-06-18 10:24

1分组求和法:
就是将数列的项分成二项,而这两项往往是常数或是等差(比)数列,它们的和当然就好求了。
例如:求1/2+3/4+7/8+9/16+......+(2^n-1)/(2^n)的话,
可以将通项(2^n-1)/(2^n)写成1-2^(-n)这样就变成每一项都是1-X(X为通项)的公式
对于通项-2^(-n)是一个等比数列,这个你就可以直接套用公式了
2数列累加法
逐差累加法
例3 已知a1=1, an+1=an+2n 求an
解:由递推公式知:a2-a1=2, a3-a2=22,a4-a3=23, …an-an-1=2n-1
将以上n-1个式子相加可得
an=a1+2+22+23+24+…+2n-1=1+2+22+23+…+2n-1=2n-1
注:对递推公式形如an+1=an+f(n)的数列均可用逐差累加法
求通项公式,特别的,当f(n)为常数时,数列即为等差数列。
逐商叠乘法
例4 已知a1=1, an=2nan-1(n≥2)求an
解:当n≥2时, =22, =23, =24,… =2n
将以上n-1个式子相乘可得
an=a1.22+3+4+…+n=2
当n=1时,a1=1满足上式
故an=2 (n∈N*)
注:对递推公式形如an+1an=g(n)的数列均可用逐商叠乘法求通项公式,特别的,当g (n)为常数时,数列即为等比数列
3裂项求和:
当一项可以拆时需要注意是否为了考察裂项求和,最有名的就是分数:1/2+1/6+1/12+……+1/n*(n+1)
可拆为 1-1/2+(1/2-1/3)+(1/3-1/4)+……+(1/n-1/(n+1))
然后你会发现从-1/2 到1/n全部能想消掉,故只剩下首项和末项。

4倒序相加:
最简单的是等差数列用倒序相加求和:
1到9 1+9=10 2+8=10。。。所以便有首项加末项乘以项数除以二。1+1/1*2+1/2*3+1/3*4+...+1/99*100

=1+(1-1/2)+(1/2-1/3)+...+(1/99-1/100)(裂项)

=1+1-1/2+1/2-1/3+...-1/99+1/99-1/100(消元)

=2-1/100

=199/100

一、基本概念:

1、 数列的定义及表示方法:

2、 数列的项与项数:

3、 有穷数列与无穷数列:

4、 递增(减)、摆动、循环数列:

5、 数列{an}的通项公式an:

6、 数列的前n项和公式Sn:

7、 等差数列、公差d、等差数列的结构:

8、 等比数列、公比q、等比数列的结构:

二、基本公式:

三、9、一般数列的通项an与前n项和Sn的关系:an=

四、10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

五、11、等差数列的前n项和公式:Sn= Sn= Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

六、12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项,an≠0)

七、13、等比数列的前n项和公式:当q=1时,Sn=na1 (是关于n的正比例式);
当q≠1时,Sn=Sn=
三、有关等差、等比数列的结论

八、14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。

九、15、等差数列{an}中,若m+n=p+q,则

十、16、等比数列{an}中,若m+n=p+q,则

十一、17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。

十二、18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

十三、19、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an bn}、 、 仍为等比数列。

十四、20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

十五、21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

十六、22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

十七、23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)

十八、24、{an}为等差数列,则 (c>0)是等比数列。

十九、25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c1) 是等差数列。

二十、26. 在等差数列 中:
(1)若项数为 ,则
(2)若数为 则, ,

二十一、27. 在等比数列 中:
(1) 若项数为 ,则
(2)若数为 则,
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。

二十二、28、分组法求数列的和:如an=2n+3n
29、错位相减法求和:如an=(2n-1)2n

二十三、30、裂项法求和:如an=1/n(n+1)

二十四、31、倒序相加法求和:如an=

二十五、32、求数列{an}的最大、最小项的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函数f(n)的增减性 如an=

二十六、33、在等差数列 中,有关Sn的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用

5错位相减:
这个可以求出和与求通项公式和首相的关系,常用与等比数列,Sn乘上q(等比的比例常数) 如:Sn(数列和)=1+2+4+8+……2^(n-1)+2^n 左右乘上2:2Sn=2+4+8+16+……2^n+2^(n+1) 用后式-前式:Sn=2^(n+1)-1 这就得出了总和与通项式的关系 。
分组求和:此为裂项求和的反运算,但是没有裂项求和用的频繁,那个是有分式首先就想到裂项求和,如1+3+4+9+……+2^n+3^n 实际上可以看成两个或多个数列,但有时混在一起而且条件不充分时不容易发现。

裂项相消法最常见的就是an=1/n(n+1)=1/n-1/(n+1)
Sn=1/1*2+1/2*3+.+1/n(n+1)
=1-1/2+1/2-1/3+1/3-1/4+.+1/(n-1)-1/n+1/n-1/(n+1)(中间相消,最后只剩首尾两项)
=1-1/(n+1)
错位相减法
这个在求等比数列求和公式时就用了
Sn=1/2+1/4+1/8+.+1/2^n
两边同时乘以1/2
1/2Sn=1/4+1/8+.+1/2^n+1/2^(n+1)(注意根原式的位置的不同,这样写看的更清楚些)
两式相减
1/2Sn=1/2-1/2^(n+1)
Sn=1-1/2^n
倒序相加法
这个在证明等差数列求和公式时就应用了
Sn=1+2+..+n
Sn=n+n-1+.+2+1
两式相加
2Sn=(1+n)+(2+n-1)+...+(n+1)
=(n+1)*n
Sn=n(n+1)/2

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com